人工晶体学报 ›› 2024, Vol. 53 ›› Issue (9): 1475-1493.
• 特邀综述 • 下一篇
储冬冬, 杨志华, 潘世烈
收稿日期:
2024-06-03
出版日期:
2024-09-15
发布日期:
2024-09-19
通信作者:
杨志华,博士,研究员。E-mail:zhyang@ms.xjb.ac.cn; 潘世烈,博士,研究员。E-mail:slpan@ms.xjb.ac.cn
作者简介:
储冬冬(1999—),女,安徽省人,博士研究生。E-mail:chudongdong20@mails.ucas.ac.cn
基金资助:
CHU Dongdong, YANG Zhihua, PAN Shilie
Received:
2024-06-03
Online:
2024-09-15
Published:
2024-09-19
摘要: 非线性光学晶体是全固态激光器的核心器件,在信息技术、国防安全等方面具有广泛且重要的应用。随着高性能计算技术的发展,计算辅助实验的“自上而下”靶向设计逐渐成为非线性光学材料设计的重要组成部分。同时,基于高通量计算获取的大规模结构性能信息,进一步为数据挖掘、机器学习的算法训练提供了坚实的数据基础,促进了材料设计的第四范式的发展。本文从非线性光学晶体的计算材料设计入手,探讨了数据驱动的非线性光学理论设计的新范式,对本团队近年来在高通量筛选、晶体结构预测以及机器学习加速非线性光学材料设计等方向的研究进展进行了综述。
中图分类号:
储冬冬, 杨志华, 潘世烈. 数据驱动的新型非线性光学材料理论设计研究进展[J]. 人工晶体学报, 2024, 53(9): 1475-1493.
CHU Dongdong, YANG Zhihua, PAN Shilie. Research Progress on Theoretical Design of Nonlinear Optical Materials via Data-Driven Approach[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1475-1493.
[1] 张克从, 王希敏. 非线性光学晶体材料科学[M]. 2版. 北京: 科学出版社, 2005. ZHANG K C, WANG X M. Nonlinear optical crystal materials science. 2nd ed. Beijing: Science Press, 2005 (in Chinese). [2] SHEN Y R. The principles of nonlinear optics[M]. New York: J Wiley, 1984. [3] CHEN C T, SASAKI T, LI R K, et al. Nonlinear Optical Borate Crystals[M]. Germany: Wiley, 2012. [4] TRAN T T, YU H W, RONDINELLI J M, et al. Deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2016, 28(15): 5238-5258. [5] GAO L, HUANG J B, GUO S R, et al. Structure-property survey and computer-assisted screening of mid-infrared nonlinear optical chalcohalides[J]. Coordination Chemistry Reviews, 2020, 421: 213379. [6] HALASYAMANI P S, RONDINELLI J M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals[J]. Nature Communications, 2018, 9: 2972. [7] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059. [8] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal β-BaB2O4[J]. Science in China Series B, 1985, 28(3): 235-243. [9] CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 1989, 6(4): 616. [10] WU Y C, SASAKI T, NAKAI S D, et al. CsB3O5: a new nonlinear optical crystal[J]. Applied Physics Letters, 1993, 62(21): 2614-2615. [11] TU J M, KESZLER D A. CsLiB6O10: a noncentrosymmetric polyborate[J]. Materials Research Bulletin, 1995, 30(2): 209-215. [12] CHEN C T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932. [13] TELL B, KASPER H M. Optical and electrical properties of AgGaS2 and AgGaSe2[J]. Physical Review B, 1971, 4(12): 4455-4459. [14] BOYD G D, BUEHLER E, STORZ F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe[J]. Applied Physics Letters, 1971, 18(7): 301-304. [15] 杨志华, 潘世烈. 新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189. YANG Z H, PAN S L. Recent research progress of design and prediction of new nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2019, 48(7): 1173-1189 (in Chinese). [16] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. [17] CHEN H, WEI W B, LIN H, et al. Transition-metal-based chalcogenides: a rich source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2021, 448: 214154. [18] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202. [19] LIANG F, KANG L, LIN Z S, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J]. Coordination Chemistry Reviews, 2017, 333: 57-70. [20] DONG L F, ZHANG S Z, GONG P F, et al. Evaluation and prospect of mid-infrared nonlinear optical materials in f0 rare earth (RE=Sc, Y, La) chalcogenides[J]. Coordination Chemistry Reviews, 2024, 509: 215805. [21] HART G L W, MUELLER T, TOHER C, et al. Machine learning for alloys[J]. Nature Reviews Materials, 2021, 6: 730-755. [22] XIE J H, ZHOU Y S, FAIZAN M, et al. Designing semiconductor materials and devices in the post-Moore era by tackling computational challenges with data-driven strategies[J]. Nature Computational Science, 2024, 4: 322-333. [23] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12: 191-201. [24] GAO C C, MIN X, FANG M H, et al. Innovative materials science via machine learning[J]. Advanced Functional Materials, 2022, 32(1): 2108044. [25] XU X, LIANG H P, HUANG Q S, et al. Computational screening of promising deep-ultraviolet light emitters[J]. Journal of the American Chemical Society, 2024, 146(18): 12864-12876. [26] HAN S R, YE L T, LI Y, et al. Theoretical understanding of nonlinear optical properties in solids: a perspective[J]. The Journal of Physical Chemistry Letters, 2024, 15(12): 3323-3335. [27] OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348. [28] OGANOV A R, LYAKHOV A O, VALLE M. How evolutionary crystal structure prediction works: and why[J]. Accounts of Chemical Research, 2011, 44(3): 227-237. [29] O'SHAUGHNESSY M, GLOVER J, HAFIZI R, et al. Porous isoreticular non-metal organic frameworks[J]. Nature, 2024, 630: 102-108. [30] HU Y J, HU X B, ZHANG L, et al. Machine-learning modeling for ultra-stable high-efficiency perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(41): 2201463. [31] MOU T Y, PILLAI H S, WANG S W, et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning[J]. Nature Catalysis, 2023, 6: 122-136. [32] FAN T, OGANOV A R. Discovery of high performance thermoelectric chalcogenides through first-principles high-throughput screening[J]. Journal of Materials Chemistry C, 2021, 9(38): 13226-13235. [33] HE J G, XIA Y, LIN W W, et al. Accelerated discovery and design of ultralow lattice thermal conductivity materials using chemical bonding principles[J]. Advanced Functional Materials, 2022, 32(14): 2108532. [34] ZHANG M S, LIU B W, JIANG X M, et al. Nonlinear optical phosphide CuInSi2P4: the inaugural member of diamond-like family I-III-IV2-V4 inspired by ZnGeP2[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1107-1113. [35] KANG L, LIANG F, JIANG X X, et al. First-principles design and simulations promote the development of nonlinear optical crystals[J]. Accounts of Chemical Research, 2020, 53(1): 209-217. [36] WANG R, LIANG F, LIN Z S. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances[J]. Scientific Reports, 2020, 10: 3486. [37] WU Q C, KANG L, LIN Z S. A machine learning study on high thermal conductivity assisted to discover chalcogenides with balanced infrared nonlinear optical performance[J]. Advanced Materials, 2024, 36(6): 2309675. [38] ZHANG B B, ZHANG X D, YU J, et al. First-principles high-throughput screening pipeline for nonlinear optical materials: application to borates[J]. Chemistry of Materials, 2020, 32(15): 6772-6779. [39] YU J, ZHANG B B, ZHANG X D, et al. Finding optimal mid-infrared nonlinear optical materials in germanates by first-principles high-throughput screening and experimental verification[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45023-45035. [40] DONG X H, HUANG H B, HUANG L, et al. Unearthing superior inorganic UV second-order nonlinear optical materials: a mineral-inspired method integrating first-principles high-throughput screening and crystal engineering[J]. Angewandte Chemie International Edition, 2024, 63(11): e202318976. [41] NACCARATO F, RICCI F, SUNTIVICH J, et al. Searching for materials with high refractive index and wide band gap: a first-principles high-throughput study[J]. Physical Review Materials, 2019, 3(4): 044602. [42] YIN Y H, WANG A, SUN Z X, et al. Machine learning regression model for predicting the band gap of multi-elements nonlinear optical crystals[J]. Computational Materials Science, 2024, 242: 113109. [43] ZHANG Z Y, LIU X, SHEN L, et al. Machine learning with multilevel descriptors for screening of inorganic nonlinear optical crystals[J]. The Journal of Physical Chemistry C, 2021, 125(45): 25175-25188. [44] YU Z X, XUE P J, XIE B B, et al. Multi-fidelity machine learning for predicting bandgaps of nonlinear optical crystals[J]. Physical Chemistry Chemical Physics, 2024, 26(22): 16378-16387. [45] LEI B H, YANG Z H, PAN S L. Enhancing optical anisotropy of crystals by optimizing bonding electron distribution in anionic groups[J]. Chemical Communications, 2017, 53(19): 2818-2821. [46] LEI B H, YANG Z H, YU H W, et al. Module-guided design scheme for deep-ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2018, 140(34): 10726-10733. [47] LI S F, JIANG X M, FAN Y H, et al. New strategy for designing promising mid-infrared nonlinear optical materials: narrowing the band gap for large nonlinear optical efficiencies and reducing the thermal effect for a high laser-induced damage threshold[J]. Chemical Science, 2018, 9(26): 5700-5708. [48] 张 振, 樊仲维, 苏良碧. 高功率激光与“超热导”激光晶体[J]. 人工晶体学报, 2022, 51(9-10): 1560-1572. ZHANG Z, FAN Z, SU L. High-power laser and ultra-high thermal conductivity laser crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1560-1572 (in Chinese). [49] WEI L, FU Y B, LI J R, et al. Theoretical study on the intrinsic source of the large thermal conductivity of Li-based chalcogenide nonlinear optical crystals: from AgGaS2 to LiGaS2[J]. Crystal Growth & Design, 2020, 20(6): 4150-4156. [50] WEI L, LV X S, YANG Y G, et al. Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X=Si, Ge, and Sn)[J]. Inorganic Chemistry, 2019, 58(7): 4320-4327. [51] HOU D W, NISSIMAGOUDAR A S, BIAN Q, et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 2019, 58(1): 93-98. [52] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335. [53] MORELLI D T, SLACK G A. High lattice thermal conductivity solids[M]. New York: Springer, 2006. [54] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, Condensed Matter, 1995, 52(20): 14636-14645. [55] WU M F, TIKHONOV E, TUDI A, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): 2300848. [56] BERGERHOFF G, HUNDT R, SIEVERS R, et al. The inorganic crystal structure data base[J]. Journal of Chemical Information and Computer Sciences, 1983, 23(2): 66-69. [57] GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The Cambridge structural database[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2016, 72(Pt 2): 171-179. [58] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002. [59] LUNDBERG S, LEE S I. A unified approach to interpreting model predictions[EB/OL]. 2017: arXiv: 1705.07874. http://arxiv.org/abs/1705.07874 [60] CHU D D, HUANG Y, XIE C W, et al. Unbiased screening of novel infrared nonlinear optical materials with high thermal conductivity: long-neglected nitrides and popular chalcogenides[J]. Angewandte Chemie International Edition, 2023, 62(16): e202300581. [61] TONG T H, ZHANG W Y, YANG Z H, et al. Series of crystals with giant optical anisotropy: a targeted strategic research[J]. Angewandte Chemie International Edition, 2021, 60(3): 1332-1338. [62] ZHOU Y, GUO Z F, GU H G, et al. A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization[J]. Nature Photonics, 2024, https://doi.org/10.1038/s41566-024-01461-8. [63] ZHANG J, WU C F, SHI H S, et al. An interlinked prediction-experiment paradigm discovering deep-ultraviolet fluorooxoborates with desired optical nonlinearity and birefringence[J]. Matter, 2023, 6(4): 1188-1202. [64] CAI W B, ABUDURUSULI A, XIE C W, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach[J]. Advanced Functional Materials, 2022, 32(23): 2200231. [65] CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Materials Science, 2012, 58: 218-226. [66] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies[J]. NPJ Computational Materials, 2015, 1: 15010. [67] SCHEIDGEN M, HIMANEN L, LADINES A N, et al. NOMAD: a distributed web-based platform for managing materials science research data[J]. The Journal of Open Source Software, 2023, 8(90): 5388. [68] TALIRZ L, KUMBHAR S, PASSARO E, et al. Materials Cloud, a platform for open computational science[J]. Scientific Data, 2020, 7: 299. [69] LIU M, MENG S. Atomly.net materials database and its application in inorganic chemistry[J]. Scientia Sinica Chimica, 2023, 53(1): 19-25. [70] LIANG Y Z, CHEN M W, WANG Y N, et al. A universal model for accurately predicting the formation energy of inorganic compounds[J]. Science China Materials, 2023, 66(1): 343-351. [71] YU Z, BO T, LIU B, et al. Superconductive materials with MgB2-like structures from data-driven screening[J]. Physical Review B, 2022, 105(21): 214517. [72] XIE C W, TIKHONOV E, CHU D D, et al. A prediction-driven database to enable rapid discovery of nonlinear optical materials[J]. Science China Materials, 2023, 66(11): 4473-4479. [73] TUDI A, ZENG H, XIE C W, et al. Uncovering the structural diversity and excellent performance of a deep ultraviolet nonlinear optical system Li(B2O3)nF (n=1, 1.5, 2, and 3) by multicomponent prediction[J]. Chemistry of Materials, 2022, 34(7): 3133-3139. [74] TUDI A, XIE C W, PAN S L, et al. Design of novel deep-UV nonlinear optical materials with one-dimensional functional module[BO2]∞ chain and fluorine-driven short phase-matching[J]. Materials Today Physics, 2022, 28: 100852. [75] WANG P, CHU Y, TUDI A, et al. The combination of structure prediction and experiment for the exploration of alkali-earth metal-contained chalcopyrite-like IR nonlinear optical material[J]. Advanced Science, 2022, 9(15): e2106120. |
[1] | 隋占仁, 徐凌波, 崔灿, 王蓉, 杨德仁, 皮孝东, 韩学峰. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. |
[2] | 王泽岩, 王朋, 刘媛媛, 郑昭科, 程合锋, 黄柏标. 基于晶体学原理的高效光催化材料的设计与制备[J]. 人工晶体学报, 2021, 50(4): 685-707. |
[3] | 候凤娟;梅大江;汪伟康;吴远东. 四配位硫属中红外非线性光学材料结构-性能分析[J]. 人工晶体学报, 2020, 49(8): 1427-1442. |
[4] | 陈莹;袁泽锐;方攀;谢婧;张羽;尹文龙;康彬. 新型红外非线性光学晶体SrCdGeSe4生长与性质表征[J]. 人工晶体学报, 2020, 49(8): 1505-1508. |
[5] | 周嘉政;楚羽;李俊杰;艾力江·阿卜杜如苏力;蒋相站;黄以能;潘世烈. Ba7AgGa5S15:一种新型混合金属硫化物的非线性光学性能研究[J]. 人工晶体学报, 2020, 49(8): 1509-1516. |
[6] | 杨志华;潘世烈. 新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189. |
[7] | 徐家跃;申慧;金敏;张彦;田甜;陈媛芝;周鼎;储耀卿. 坩埚下降法在新材料探索及晶体生长中的应用[J]. 人工晶体学报, 2019, 48(6): 975-984. |
[8] | 雷勇波;赵北君;朱世富;陈宝军;谭波;吴小娟;黄毅. AgGaS2单晶生长石英安瓿镀碳工艺研究[J]. 人工晶体学报, 2008, 37(1): 25-28. |
[9] | 薛冬峰. 晶体材料的设计与模拟[J]. 人工晶体学报, 2007, 36(4): 743-749. |
[10] | 夏文兵;林哲帅;吴以成;陈创天. 一种潜在的新型非线性光学材料-氟硼酸铍[J]. 人工晶体学报, 2005, 34(4): 597-600. |
[11] | 李国辉;苏根博;庄欣欣;李征东;贺友平. 一种新的红外非线性光学晶体材料-K3V5O14[J]. 人工晶体学报, 2004, 33(4): 559-561. |
[12] | 李一春;赵北君;朱世富;王瑞林;张伟;刘敏文;刘娟;陈宝军;张建军. AgGaS2晶体生长成核研究[J]. 人工晶体学报, 2004, 33(2): 231-234. |
[13] | 张国春;吴以成;傅佩珍;王国富;郭范;陈创天. 一种新的非线性光学材料-Na3Sm2(BO3)3[J]. 人工晶体学报, 2001, 30(3): 227-231. |
[14] | 吴以成. B3O7基团型硼酸盐非线性光学晶体研究进展[J]. 人工晶体学报, 2001, 30(1): 43-48. |
[15] | 罗军;钟真武;范世(马豈);王锦昌. CaYO(BO3)3晶体坩埚下降法生长[J]. 人工晶体学报, 2000, 29(1): 25-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||