[1] 姜 飞, 陈桂娥, 毛海舫, 等. 共轭微孔聚合物在CO2气体存储和分离方面的应用基础研究[J]. 化学工程与技术, 2017, 7(6): 315-324. JIANG F, CHEN G, MAO H F, et al. Fundamental research on the application of conjugated microporous polymers for CO2 gas storage and separation[J]. Hans Journal of Chemical Engineering and Technology, 2017, 7(6): 315-324(in Chinese). [2] VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2010, 132(1): 76-78. [3] 陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. CHEN D M. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41 (in Chinese). [4] 徐海云, 沈 珍, 于艳红, 等. 硼-二吡咯亚甲基染料类分子荧光传感器[J]. 无机化学学报, 2005, 21(5): 617-625. XU H Y, SHEN Z, YU Y H, et al. Boron-dipyrromethene based fluorescent sensors[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(5): 617-625 (in Chinese). [5] WU Y D, LIN M H, LIU D Y, et al. Two-dimensional Cd(ii) coordination polymer encapsulated by Tb3+ as a reversible luminescent probe for Fe3[J]. RSC Advances, 2019, 9(60): 34949-34957. [6] SMITH J A, SINGH-WILMOT M A, CARTER K P, et al. Lanthanide-2, 3, 5, 6-tetrabromoterephthalic acid metal-organic frameworks: evolution of Halogen…Halogen interactions across the lanthanide series and their potential as selective bifunctional sensors for the detection of Fe3+, Cu2+, and nitroaromatics[J]. Crystal Growth & Design, 2019, 19(1): 305-319. [7] WANG X, XU Q W, WEI M M, et al. Lanthanide ternary mixed-ligand coordination polymers as fluorescent sensors for the sensitive and selective detection of chlorogenic acid[J]. CrystEngComm, 2022, 24(36): 6367-6375. [8] GAO J H, HUANG P P, ZHANG Z J, et al. A new 3D Cd-MOF with 2fold interpenetrated as “turn-on/turn-off” fluorescent sensor for selective and sensitive detection of Cu2+, Al3+ and Fe3+ ions[J]. Journal of Molecular Structure, 2024, 1299: 137162. [9] 余新武, 刘术侠, 王 戈, 等. 三取代过渡金属钨镓杂多配合物的磁性及导电性能研究[J]. 化学学报, 1996, 54(9): 864-868. YU X W, LIU S X, WANG G, et al. Studies on magnetism and conductibility of trisubstituted tungstogalliumate containing transition metal[J]. Acta Chimica Sinica, 1996, 54(9): 864-868 (in Chinese). [10] 刘彦波. 吡啶-2, 6-二羧酸桥联的双核钴配合物的磁性[J]. 分子科学学报, 2009, 25(1): 69-71. LIU Y B. Magnetic properties of a pyridine-2, 6-dicarboxylate bridged dinuclear cobalt(Ⅱ) complex[J]. Journal of Molecular Science, 2009, 25(1): 69-71 (in Chinese). [11] 徐 艳, 崔 磊, 李新星, 等. 萘基二膦酸钴配合物的合成、晶体结构和磁性质[J]. 人工晶体学报, 2022, 51(7): 1233-1240. XU Y, CUI L, LI X X, et al. Synthesis, crystal structure and magnetic properties of naphthalene-based cobalt diphosphonates compound[J]. Journal of Synthetic Crystals, 2022, 51(7): 1233-1240 (in Chinese). [12] HORCAJADA P, SERRE C, MAURIN G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. Journal of the American Chemical Society, 2008, 130(21): 6774-6780. [13] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug deliveryand imaging[J]. Nature Materials, 2010, 9: 172-178. [14] 吕亚非. 金属-超分子聚合物的合成, 结构与应用[J]. 功能高分子学报, 2004, 17(2): 307-316. LU Y F. Synthesis, architectures, and applications of metallo-supramolecular polymers[J]. Journal of Functional Polymers, 2004, 17(2): 307-316 (in Chinese). [15] WANG H H, SHI W J, HOU L, et al. A cationic MOF with high uptake and selectivity for CO2 due to multiple CO2-philic sites[J]. Chemistry, 2015, 21(46): 16525-16531. [16] 邓德朋, 陈明华, 刘元东, 等. 四个CyB5Q[5]-Ca配合物的晶体结构和在不同阴离子环境下的不同配位状态[J]. 无机化学学报, 2022, 38(10): 1927-1938. DENG D P, CHEN M H, LIU Y D, et al. Crystal structure of four CyB5Q[5]-Ca complexes: the different coordination states in different anionic environments[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(10): 1927-1938 (in Chinese). [17] ZHANG D S, ZHANG Y Z, GAO J, et al. Structure modulation from unstable to stable MOFs by regulating secondary N-donor ligands[J]. Dalton Transactions, 2018, 47(39): 14025-14032. [18] WANG K, HU X L, LI X, et al. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O2-7[J]. Journal of Solid State Chemistry France, 2021, 298: 122128. [19] 郗 婧, 麻秀芳, 徐燕红, 等. 溶剂诱导的两例单核Er3+配合物的合成、晶体结构及磁性[J]. 无机化学学报, 2020, 36(5): 927-932. XI J, MA X F, XU Y H, et al. Solvent-induced syntheses, crystal structures and magnetic properties of two mononuclear Er(Ⅲ) complexes[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(5): 927-932 (in Chinese). [20] SUNG H L, LEE C H, WU J E, et al. Temperature-controlled Cd(II)-phosphonate coordination polymers: syntheses, crystal structures, and luminescent properties[J]. Polyhedron, 2016, 115: 54-60. [21] BAI C, ZHANG J L, HU H M, et al. Influences of reaction temperature and pH on structural diversity of visible and near-infrared lanthanide coordination compounds based on bipyridyl carboxylate and oxalate ligands[J]. Journal of Solid State Chemistry, 2020, 292: 121691. [22] 田 娜, 刘英才, 杨远航, 等. 一例吡嗪羧酸镉配合物的合成、结构及荧光性质研究[J]. 人工晶体学报, 2023, 52(2): 322-326. TIAN N, LIU Y C, YANG Y H, et al. Synthesis, structure and fluorescence properties of a pyrazinyl carboxylate cadmium complex[J]. Journal of Synthetic Crystals, 2023, 52(2): 322-326 (in Chinese). [23] JIN F, PAN C Y, ZHANG W X, et al. Enhanced two-photon excited fluorescence of mercury complexes with a conjugated ligand: effect of the central metal ion[J]. Journal of Luminescence, 2016, 172: 264-269. [24] ELANTABLI F M, MOHAMED R G, EL-MEDANI S M, et al. Structural investigations of new tridentate-phenylacetohydrazide Schiff base metal chelates: X-ray diffraction, Hirshfeld surface analyses, DFT, antibacterial and molecular docking studies[J]. Journal of Molecular Structure, 2024, 1299: 137230. [25] NAJAFI Z, MARANDI F, BAHRAMI A, et al. Four new Zn(II) complexes based on 2-thienoyltrifluoroacetone and N-donor auxiliary bridging and chelating ligands: synthesis, spectroscopic and structural studies, thermal behavior and Hirshfeld surface analysis[J]. Polyhedron, 2023, 242: 116486. |