欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (9): 1629-1639.

• 研究论文 • 上一篇    下一篇

二氧化锡基染料敏化太阳能电池电子传输模型优化及器件性能研究

程友良1,2, 杜慧彬1,2, 张忠宝1,2, 王凯1,2   

  1. 1.华北电力大学动力工程系,保定 071003;
    2.华北电力大学,河北省低碳高效发电技术重点实验室,保定 071003
  • 收稿日期:2024-04-03 出版日期:2024-09-15 发布日期:2024-09-19
  • 作者简介:程友良(1963—),男,湖北省人,博士,教授。E-mail:ylcheng@ncepu.edu.cn
  • 基金资助:
    保定市科技计划基础研究专项(2372P014)

Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells

CHENG Youliang1,2, DU Huibin1,2, ZHANG Zhongbao1,2, WANG Kai1,2   

  1. 1. Department of Power Engineering, North China Electric Power University, Baoding 071003, China;
    2. Key Laboratory of Low Carbon and Efficient Power Generation Technology, North China Electric Power University, Baoding 071003, China
  • Received:2024-04-03 Online:2024-09-15 Published:2024-09-19

摘要: 针对染料敏化太阳能电池(DSSC)而言,其光阳极的材料特性与设计参数对DSSC性能具有显著影响。为了深入研究这一影响,本文采用数值模拟的方式,以探究光阳极结构变化对DSSC性能的详细影响。但目前的数学模型不够完善且预测精度较低,因而本文在光电子传输理论和朗伯比尔定律的基础上,采用常数堆叠法和可变堆叠法将孔隙率对电子扩散系数的影响引入到DSSC的数学模型中,建立了更加完善且精确的电子传输模型,该模型能够更深入剖析光阳极结构参数变化对DSSC性能的影响。通过数值模拟了在不同孔隙体积、电子寿命、SnO2涂层厚度及比表面积下DSSC的性能。结果发现:随着SnO2薄膜孔隙体积的增加,太阳能电池的短路电流密度逐渐减小,而开路电压则呈增大趋势,这导致光电转换效率逐渐降低。当孔隙体积达到0.10 cm3/g时,DSSC光电转换效率达5.16%,因此在保证电池刚性的前提下,尽量降低SnO2的孔隙体积,有利于吸收系数和扩散系数的提升,这两个参数的提升有利于DSSC整体性能的提升,同时电子寿命的延长会带来太阳能电池短路电流密度和开路电压的增大,进而提升光电转换效率,当电子寿命达到200 ms时,光电转换效率达到5.82%。本研究通过详细的数值模拟分析,为优化光阳极结构从而提升DSSC的光电性能提供了有力的理论指导,有助于进一步推动DSSC的研究与应用。

关键词: 染料敏化太阳能电池, 电子传输模型, 孔隙体积, 比表面积, 电子寿命, 数值模拟, 光电转换效率

Abstract: For dye-sensitized solar cells (DSSC), the material properties and design parameters of their photoanodes have a more significant impact on the performance of DSSCs. In order to investigate this issue in depth, this paper adopts numerical simulation to explore the detailed impact of change in the photoanode structure on the performance of DSSC. However, the current mathematical model is not comprehensive enough and the prediction accuracy is low. Therefore, based on the theory of photoelectron transfer and Lambert Beer's law, this paper introduces the influence of porosity on electron diffusion coefficient into the mathematical model of DSSC using constant stacking method and variable stacking method, and establishes a more comprehensive and accurate electron transfer model. This model can deeply analyze the impact of changes in the structure parameters of the photoanode on the performance of DSSC. The performance of DSSC under different pore volumes, electron lifetime, SnO2 coating thickness, and specific surface area were simulated through numerical simulation. The results show that as the pore volume of SnO2 thin films increases, the short-circuit current density of solar cells gradually decreases, while the open circuit voltage shows an increasing trend, leading to a gradual decrease in photoelectric conversion efficiency. When the pore volume reaches 0.10 cm3/g, its photoelectric conversion efficiency reaches 5.16%. Therefore, while ensuring the rigidity of the battery, reducing the pore volume of SnO2 as much as possible is beneficial for improving the absorption coefficient and diffusion coefficient. The improvement of these two parameters is conducive to the overall performance of DSSC. At the same time, the extension of electron lifetime will bring about an increase in the short-circuit current density and open circuit voltage of solar cells, thereby improving the photoelectric conversion efficiency. When the electron lifetime reaches 200 ms, its photoelectric conversion efficiency reaches 5.82%. This study provides strong theoretical guidance for optimizing the photoanode structure and improving the photoelectric performance of DSSC through detailed numerical simulation analysis, which helps to further promote the research and application of dye sensitized solar cells.

Key words: dye sensitized solar cell, electronic transport model, pore volume, specific surface area, electronic lifetime, numerical simulation, photoelectric conversion efficiency

中图分类号: