欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (10): 1720-1728.

• 研究论文 • 上一篇    下一篇

基于LightGBM和遗传算法的二维层状声子晶体结构设计

楚凡, 赵春风   

  1. 合肥工业大学土木与水利工程学院,合肥 230009
  • 收稿日期:2024-05-05 出版日期:2024-10-15 发布日期:2024-10-21
  • 通信作者: 赵春风,博士,教授。E-mail:zhaowindy@hfut.edu.cn
  • 作者简介:楚 凡(1999—),男,安徽省人,硕士研究生。E-mail:2021170776@mail.hfut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52278302)

Design of Two-Dimensional Layered Phononic Crystal Structures Based on LightGBM and Genetic Algorithm

CHU Fan, ZHAO Chunfeng   

  1. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2024-05-05 Online:2024-10-15 Published:2024-10-21

摘要: 声子晶体具有周期性人工复合结构,以其带隙特性在波传播控制上的应用潜力而广受关注,为工程减振降噪提供了新的解决思路,这类材料的设计问题是当下研究的焦点。本研究以二维层状声子晶体结构为例,提出了一种利用LightGBM和改进遗传算法设计的创新方法。首先在声子晶体的带隙预测上选用LightGBM算法,对结构的排列向量进行类别特征处理,并结合模拟退火算法进行超参数调优,在传统有限元法计算时间的1/3134内,达到了整体误差不超过2%的预测精度;其次在设计方法上集成了一种基于精英保留策略的遗传算法,以地铁运行造成的环境振动问题为例,确定以带隙宽度为优化的适应度函数,得到了对应结构带隙覆盖30~40 Hz频段的种群;最后,对优化结构进行有限元分析,其带隙特征与预期基本吻合。本研究为声子晶体结构高效优化设计提供了一种新的解决方案。

关键词: 声子晶体, 遗传算法, LightGBM, 结构设计, 减振特性, 带隙

Abstract: Phononic crystals are periodically artificial composite structures that have garnered widespread attention for their bandgap properties and potential applications in wave propagation control, offering novel solutions for engineering vibration and noise reduction. The design of these materials is a current research focus. This study takes two-dimensional layered phonon crystal structure as an example, presents an innovative method for designing two-dimensional layered phononic crystal structures, utilizing LightGBM and an improved genetic algorithm. Initially, the LightGBM algorithm was employed for bandgap prediction of the phononic crystals, with the structural arrangement vectors subjected to categorical feature processing, and hyperparameter tuning conducted through the simulated annealing algorithm, achieving a prediction accuracy with an overall error of no more than 2% within 1/3134 of the traditional finite element method computation time. Subsequently, a design method integrating a genetic algorithm based on an elite preservation strategy was introduced. Using the environmental vibration issue caused by subway operation as an example, a fitness function optimized for bandgap width was established, resulting in a population with structural bandgaps covering the 30~40 Hz frequency range. Finally, finite element analysis of one structure verified its bandgap characteristics align closely with expectations. This research provides a new solution for the efficient optimization design of multiple phononic crystal structure schemes.

Key words: phononic crystal, genetic algorithm, LightGBM, structural design, vibration reduction characteristic, bandgap

中图分类号: