[1] 赵绪尧. 2.79微米新型Er3+掺杂钪镓石榴石激光晶体生长及性能研究[D]. 合肥: 中国科学技术大学, 2020. ZHAO X Y. Growth and properties of 2.79 μm Er3+ doped scandium gallium garnet laser crystal[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese). [2] 王冬梅. 掺铬锗酸盐激光晶体生长与性能研究[D]. 长春: 长春理工大学, 2022. WANG D M. Growth and properties of chromium-doped germanate laser crystals[D]. Changchun: Changchun University of Science and Technology, 2022 (in Chinese). [3] 梁洋洋. Er∶Lu2O3晶体 3 μm连续与脉冲激光特性研究[D]. 济南: 山东大学, 2022. LIANG Y Y. Continuous-wave and pulsed laser characterizations of Er∶Lu2O3 crystal at 3 μm [D]. Jinan: Shandong University, 2022 (in Chinese). [4] 张 振. Er3+掺杂CaF2/SrF2晶体局域结构、光谱与激光性能研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. ZHANG Z. Study on local structure, spectra properties and laser performance of Er3+ doped CaF2/SrF2 crystals[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2021 (in Chinese). [5] ZHOU S F, LI C Y, YANG G, et al. Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid[J]. Advanced Functional Materials, 2013, 23(43): 5436-5443. [6] GUO R Q, WANG F Y, WANG S X, et al. Exploration of the crystal growth and crystal-field effect of Yb3+ in orthorhombic GdScO3 and LaLuO3 crystals[J]. Crystal Growth & Design, 2023, 23(5): 3761-3768. [7] ALIMOV O, DOBRETSOVA E, GURYEV D, et al. Growth and characterization of neodymium-doped yttrium scandate crystal fiber with a bixbyite-type crystal structure[J]. Crystal Growth & Design, 2020, 20(7): 4593-4599. [8] KRÄNKEL C, UVAROVA A, GUGUSCHEV C, et al. Rare-earth doped mixed sesquioxides for ultrafast lasers[J]. Optical Materials Express, 2022, 12(3): 1074. [9] PETROV V, PETERMANN K, GRIEBNER U, et al. Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts[C]//Laser Source and System Technology for Defense and Security II. Orlando (Kissimmee), FL. SPIE, 2006, 6216: 130-143. [10] YU J Q, CUI L, HE H Q, et al. Raman spectra of RE2O3 (RE=Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis[J]. Journal of Rare Earths, 2014, 32(1): 1-4. [11] LI J D, HOU W T, XUE Y Y, et al. A new near-infrared broadband laser crystal: Cr3+ doped YScO3[J]. Journal of Luminescence, 2023, 257: 119710. [12] PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals[J]. CrystEngComm, 2018, 20(40): 6291-6299. [13] CHAIX-PLUCHERY O, KREISEL J. Raman scattering of perovskite DyScO3 and GdScO3 single crystals[J]. Journal of Physics: Condensed Matter, 2009, 21(17): 175901. [14] BROWN E E, FLEISCHMAN Z D, MCKAY J, et al. Spectroscopic characterization of low-phonon Er-doped BaF2 single crystal for mid-IR lasers[J]. Optical Materials Express, 2021, 11(2): 575. [15] BRUNN P VON, HEUER A, KRÄNKEL C. Rare-earth-doped sesquioxides for lasers in the mid-infrared spectral range[C]. Shaker Verlag: 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference (Optica Publishing Group), 2015: CE_P_22. [16] UECKER R, WILKE H, SCHLOM D G, et al. Spiral formation during Czochralski growth of rare-earth scandates[J]. Journal of Crystal Growth, 2006, 295(1): 84-91. [17] 刘文宇. 掺镱倍半氧化物固溶体混晶的生长及其光谱展宽性能研究[D]. 济南: 山东大学, 2020. LIU W Y. Growth and spectral broadening properties of ytterbium-doped sesquioxide solid solution mixed crystals[D]. Jinan: Shandong University, 2020 (in Chinese). [18] 郭瑞琦. 新型掺镱倍半氧化物混晶的晶体场计算及光谱展宽机理研究[D]. 济南: 山东大学, 2023. GUO R Q. Crystal field calculation and spectral broadening mechanism of a new ytterbium-doped sesquioxide mixed crystal[D]. Jinan: Shandong University, 2023 (in Chinese). [19] HOU W T, XU Z A, ZHAO H Y, et al. Enhanced 2.7 μm continuous-wave emission of Er, Pr∶Lu2O3 crystal[J]. Journal of Luminescence, 2020, 224: 117094. [20] HOU W T, XU Z A, ZHAO H Y, et al. Spectroscopic analysis of Er∶Y2O3 crystal at 2.7 μm mid-IR laser[J]. Optical Materials, 2020, 107: 110017. [21] ZHANG N, YIN Y Q, ZHANG J, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. CrystEngComm, 2021, 23(7): 1657-1662. [22] ZHANG N, ZHOU H L, YIN Y R, et al. Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application[J]. Journal of Alloys and Compounds, 2021, 889: 161348. [23] 赵衡煜, 侯文涛, 薛艳艳, 等. 高熔点稀土倍半氧化钪(Sc2O3)晶体的生长[J]. 人工晶体学报, 2021, 50(4): 732-734. ZHAO H Y, HOU W T, XUE Y Y, et al. Growth of high melting point rare earth sesquioxide scandium oxide crystal (Sc2O3)[J]. Journal of Synthetic Crystals, 2021, 50(4): 732-734 (in Chinese). [24] WANG G J, YIN Y R, ZHANG B T, et al. Record size crystal growth and laser performance of Yb-doped lutetium oxide (Yb∶Lu2O3) single crystal[J]. CrystEngComm, 2024, 26(4): 452-458. [25] PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. Journal of Crystal Growth, 2002, 237: 879-883. [26] LIU J, RICO M, GRIEBNER U, et al. Efficient room temperature continuous-wave operation of an Yb3+∶Sc2O3 crystal laser at 1041.6 and 1094.6 nm[J]. Physica Status Solidi (a), 2005, 202(3): R19-R21. [27] PETERS R, KRÄNKEL C, PETERMANN K, et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb∶Lu2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1934-1938. [28] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Applied Physics B, 2011, 102(1): 19-24. [29] LI T, BEIL K, KRÄNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 285 μm[J]. Optics Letters, 2012, 37(13): 2568. [30] LIANG Y, LI T, ZHANG B, et al. 14.1 W continuous-wave dual-end diode-pumped Er∶Lu2O3 laser at 2.85 μm[J]. Chines Optics Letters, 2024, 22(1): 011403. [31] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573. [32] ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 μm[J]. Applied Optics, 2023, 62(6): 1462. [33] 李健达. 高熔点稀土氧化物晶体生长和超快激光特性研究[D]. 上海: 同济大学, 2024. LI J D. Study on crystal growth and ultrafast laser properties of high-melting-point rare earth oxides[D]. Shanghai: Tongji University, 2024 (in Chinese) [34] 李 晴, 王 俊, 马 杰, 等. 倍半氧化物激光陶瓷的研究进展[J]. 硅酸盐学报, 2024, 52(3): 1006-1022. LI Q, WANG J, MA J, et al. Research progress on sesquioxide laser ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1006-1022 (in Chinese). [35] PETERS V, PETERMANN K, BOLZ A, et al. Ytterbium-doped sesquioxides as host materials for high-power laser applications[C]. Laser 2001-World of Photonics 15th International Conference on Lasers and Electrooptics in Europe, Technical Digest Series (Optica Publishing Group, 2001): HP40. [36] KONG J, TANG D Y, SHEN D Y, et al. Diode-pumped Yb∶Y2O3 ceramic laser[C]//High-Power Lasers and Applications II. Shanghai, China. SPIE, 2002, 4914: 74-81. [37] KONG J, LU J, TAKAICHI K, et al. Diode-pumped Yb∶Y2O3 ceramic laser[J]. Appl Phys Lett, 2003, 82(16): 2556-2558. [38] LU J, BISSON J F, TAKAICHI K, et al. Yb3+∶Sc2O3 ceramic laser[J]. Appl Phys Lett, 2003, 83(6): 1101-1103. [39] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3. [40] KONG J, TANG D Y, ZHAO B, et al. 9.2 W diode-end-pumped Yb∶Y2O3 ceramic laser[J]. Appl Phys Lett, 2005, 86(16): 161116. [41] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578. [42] PETERS R, KRÄNKEL C, FREDRICH-THORNTON S T, et al. Thermal analysis and efficient high power continuous-wave andmode-locked thin disk laser operation of Yb-doped sesquioxides[J]. Applied Physics B, 2011, 102(3): 509-514. [43] WEICHELT B, WENTSCH K S, VOSS A, et al. A 670 W Yb∶Lu2O3 thin-disk laser[J]. Laser Physics Letters, 2012, 9(2): 110-115. [44] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Continuous wave and mode-locked Yb3+∶Y2O3 ceramic thin disk laser[J]. Optics Express, 2012, 20(10): 10847-10852. [45] KITAJIMA S, NAKAO H, SHIRAKAWA A, et al. CW performance and temperature observation of Yb∶Lu2O3 ceramic thin-disk laser[C]//Laser Congress 2017 (ASSL, LAC). Nagoya, Aichi. Washington, D.C.: OSA, 2017. [46] DAVID S P, JAMBUNATHAN V, YUE F X, et al. Efficient diode pumped Yb∶Y2O3 cryogenic laser[J]. Applied Physics B, 2019, 125(7): 137. [47] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb∶Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the American Ceramic Society, 2019, 102(12): 7491-7499. [48] ESSER S, RÖHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066. [49] ESSER S, XU X D, WANG J, et al. Single-crystal and ceramic Yb∶Lu2O3 gain media for thin-disk oscillators[J]. Applied Physics B, 2023, 129(10): 160. [50] HÜLSHOFF L, UVAROVA A, GUGUSCHEV C, et al. Czochralski growth and laser operation of Er- and Yb-doped mixed sesquioxide crystals[C]//Laser Congress 2021 (ASSL, LAC). Washington, DC: Optica Publishing Group, 2021: ATh1A.2. [51] KALUSNIAK S, UVAROVA A, ARLT I, et al. Growth, characterization, and efficient laser operation of czochralski- and micro-pulling-down-grown Yb3+∶YScO3 mixed sesquioxides[J]. Optical Materials Express, 2024, 14(2): 304. [52] PARADIS C, MODSCHING N, WITTWER V J, et al. Generation of 35-fs pulses from a kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918-14925. [53] LIU L X, NIU S Y, LIANG Z Y, et al. Spectroscopy and kerr-lens mode-locked operation of Yb∶GdScO3 crystal[J]. Optics Express, 2024, 32(9): 16065-16074. [54] GUO J, LI S M, ZHAO C C, et al. SESAM mode-locked Yb∶GdScO3 laser[J]. Optics Express, 2024, 32(5): 7865-7872. [55] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped sub-100 fs kerr-lens mode-locked Yb3+∶Sc2O3 ceramic laser[J]. Optics Letters, 2007, 32(23): 3382-3384. [56] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped ultrashort-pulse generation based on Yb3+∶Sc2O3 and Yb3+∶Y2O3 ceramic multi-gain-media oscillator[J]. Optics Express, 2009, 17(5): 3353. [57] TOKURAKAWA M, SHIRAKAWA A, UEDA K, et al. Ultrashort pulse generation from diode pumped mode-locked Yb3+: sesquioxide single crystal lasers[J]. Optics Express, 2011, 19(4): 2904-2909. [58] SU X, WANG Y, YIN Y, et al. Sub-100-fs Kerr-lens mode-locked Yb∶Lu2O3 laser with more than 60% optical efficiency[J]. Optics Letters, 2024, 49: 145-148. [59] ZHAO Y G, WANG L, CHEN W D, et al. SESAM mode-locked Tm∶LuYO3 ceramic laser generating 54-fs pulses at 2048 nm[J]. Applied Optics, 2020, 59(33): 10493-10497. [60] ZHAO Y G, WANG L, WANG Y C, et al. SWCNT-SA mode-locked Tm∶LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 μm[J]. Optics Letters, 2020, 45(2): 459. [61] ZHAO Y G, WANG L, CHEN W D, et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser[J]. Optics Letters, 2021, 46(14): 3428-3431. [62] ZHANG N, LIU S D, WANG Z X, et al. SESAM mode-locked Tm∶Y2O3 ceramic laser[J]. Optics Express, 2022, 30(16): 29531-29538. [63] ZHANG N, SONG Q S, ZHOU J J, et al. 44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm∶GdScO3 laser[J]. Optics Letters, 2023, 48(2): 510-513. [64] SUZUKI A, KALUSNIAK S, GANSCHOW S, et al. Kerr-lens mode-locked 49-fs Tm3+∶YScO3 single-crystal laser at 2.1 μm[J]. Optics Letters, 2023, 48(16): 4221. [65] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm[J]. Optics Express, 2013, 21(3): 3926-3931. [66] WANG F, TANG J W, LI E H, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019, 44(24): 5933-5936. [67] LIU J, ZHANG N, SONG Q, et al. Tunable and mode-locked Tm,Ho∶GdScO3 laser[J]. Optics Letters, 2024, 49, 2145-2148. [68] ZHANG N, DING H, WANG Y, et al. Mode-locking of anisotropic Tm,Ho∶GdScO3 laser delivering 57-fs pulses at 2078 nm[J]. Opt Express, 2024, 32: 35194-35201. [69] 徐 军. 激光材料科学与技术前沿[M]. 上海: 上海交通大学出版社, 2007. XU J. Frontiers of Laser Material Science and Technology[M]. Shanghai: Shanghai Jiaotong University Press, 2007 (in Chinese). [70] 徐 军. 新型激光晶体材料及其应用[M]. 北京: 科学出版社, 2016. XU J. Novel laser crystal materials and their applications[M]. Beijing: Science Press, 2016 (in Chinese). [71] 沈德元, 范滇元. 中红外激光器[M]. 北京: 国防工业出版社, 2015. SHEN D Y, FAN D Y. Mid-infrared laser[M]. Beijing: National Defense Industry Press, 2015 (in Chinese). [72] SOROKINA I T, VODOPYANOV K L. Solid-state mid-infrared laser sources[M]. Berlin: Springer Science & Business Media, 2003. [73] GUAN X F, ZHAN L J, ZHU Z W, et al. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er∶Y2O3 ceramic lasers at 27 μm[J]. Applied Optics, 2018, 57(3): 371. [74] GUAN X F, WANG J W, ZHANG Y Z, et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830. [75] 侯文涛. 铒离子掺杂激光晶体的生长与中红外波段光学性能研究[D]. 上海: 同济大学, 2023. HOU W T. Growth and optical properties of erbium-doped laser crystals in mid-infrared band[D]. Shanghai: Tongji University, 2023 (in Chinese). [76] ZONG M Y, HOU W T, ZHAO Y H, et al. 2.7 μm laser properties research of Er∶Y2O3 crystal[J]. Infrared Physics & Technology, 2022, 127: 104460. [77] HOU W, XUE X, QIN Z, et al. Efficient continuous wave and passively Q switched Er∶GdScO3 laser using Fe∶ZnSe at 2.8 μm[J]. Optics Letters, 2023, 48: 2118-2121. |