[1] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics. Journal of the European Ceramic Society, 2021, 41(7): 3895-3910. [2] 王萌萌, 尹延如, 丁晓圆, 等. 倍半氧化物晶体及其1~3 μm波段激光性能研究进展. 人工晶体学报, 2023, 52(7): 1169-1194. WANG M M, YIN Y R, DING X Y, et al. Research progress of sesquioxide crystals and its laser performances in the band of 1-3 μm. Journal of Synthetic Crystals, 2023, 52(7): 1169-1194 (in Chinese). [3] NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7-3 μm) bulk lasers: a review. Chinese Optics Letters, 2021, 19(9): 091407. [4] KIM W, BAKER C, FLOREA C, et al. Doped sesquioxide ceramic for eye-safe solid state laser materials[J]. Proceedings of SPIE, 2013, 8599: 85990 J. [5] MERKLE L D, TER-GABRIELYAN N. Er-doped sesquioxides for 1.5-micron lasers-spectroscopic comparisons[C]//Laser Technology for Defense and Security IX. Baltimore, Maryland, USA. SPIE, 2013. [6] SHARMA S, SHORI R, MILLER J K. Spectroscopic properties of Er-sesquoxides[C]//Solid State Lasers XXI: Technology and Devices. San Francisco, California, USA. SPIE, 2012: 82350F. [7] PERMIN D, BELYAEV A, KOSHKIN V, et al. Erbium-doped Lu2O3-MgO and Sc2O3-MgO IR-transparent composite ceramics[J]. Nanomaterials, 2023, 13(10): 1620. [8] KRÄNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602013. [9] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128. [10] DUBINSKII M, TER-GABRIELYAN N, MERKLE L D, et al. First laser performance of Er3+-doped scandia (Sc2O3) ceramic[C]//Laser Source Technology for Defense and Security IV. Orlando, FL. SPIE, 2008. [11] HIRT C, EICHHORN M, KUHN H, et al. Inband-pumped Er∶Lu2O3 laser near 1.6 μm[C]//CLEO/Europe-EQEC 2009-European. IEEE, 2009. [12] TER-GABRIELYAN N, MERKLE L D, IKESUE A, et al. Ultralow quantum-defect eye-safe Er∶Sc2O3 laser[J]. Optics Letters, 2008, 33(13): 1524-1526. [13] ŠVEJKAR R, SULC J, JELINKOVA H. Temperature dependence of spectroscopy and laser parameters of Er∶Y2O3 ceramic from 80 to 300 K[C]//Solid State Lasers XXXII: Technology and Devices. January 28-February 3, 2023. San Francisco, USA. SPIE, 2023: 154-159. [14] UVAROVA A, LOIKO P, KALUSNIAK S, et al. Stimulated-emission cross-sections of trivalent erbium ions in the cubic sesquioxides Y2O3, Lu2O3, and Sc2O3[J]. Optical Materials Express, 2023, 13(5): 1385. [15] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er∶Y2O3 ceramic laser at 2.7 μm[J]. Applied Physics Express, 2022, 15(6): 062004. [16] LIANG Y Y, LI T, ZHANG B T, et al. 14.1 W continuous-wave dual-end diode-pumped Er∶Lu2O3 laser at 2.85 μm[J]. Chinese Optics Letters, 2024, 22(1): 011403. [17] DING M M, WANG J, WANG F, et al. High-power Er∶Y2O3 ceramic laser with an optical vortex beam output at ~2.7 μm[J]. Frontiers in Physics, 2023, 11: 1119263. [18] TER-GABRIELYAN N, FROMZEL V, DUBINSKII M. Performance analysis of the ultra-low quantum defect Er3+∶Sc2O3 laser[J]. Optical Materials Express, 2011, 1(3): 503. [19] ZHANG X, ZHAO H L, GAO S, et al. First-principles study of electronic structure and optical properties of Er∶Lu2O3[J]. Journal of Rare Earths, 2021, 39(4): 453-459. [20] HUANG Z Y, SHI Y, ZHANG Y T, et al. An effective strategy for preparing transparent ceramics using nanorod powders based on pressure-assisted particle fracture and rearrangement[J]. Journal of Advanced Ceramics, 2022, 11(12): 1976-1987. [21] 刘 焱, 覃显鹏, 甘 霖, 等. 亚微米球形Y2O3粉体及其透明陶瓷的制备[J]. 无机材料学报, 2024, 39(6): 691-696. LIU Y, QIN X P, GAN L, et al. Preparation of sub-micron spherical Y2O3 particles and transparent ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 691-696 (in Chinese). [22] YANG C L, HUANG J Q, HUANG Q F, et al. Optical, thermal, and mechanical properties of (Y1-xScx)2O3 transparent ceramics[J]. Journal of Advanced Ceramics, 2022, 11(6): 901-911. [23] MERKLE L D, TER-GABRIELYAN N, KACIK N J, et al. Er∶Lu2O3-laser-related spectroscopy[J]. Optical Materials Express, 2013, 3(11): 1992. [24] SERIVALSATIT K, WASANAPIARNPONG T, KUCERA C, et al. Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics[J]. Optical Materials, 2013, 35(7): 1426-1430. [25] QIAO X B, HUANG H T, YANG H, et al. Fabrication, optical properties and LD-pumped 2.7 μm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics[J]. Journal of Alloys and Compounds, 2015, 640: 51-55. [26] WANG L, HUANG H T, SHEN D Y, et al. Highly stable self-pulsed operation of an Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Laser Physics Letters, 2017, 14(4): 045803. [27] REN X J, SHEN D Y, ZHANG J, et al. Passive Q-switching of ~2.7 μm Er∶Lu2O3 ceramic laser with a semiconductor saturable absorber mirror[J]. Japanese Journal of Applied Physics, 2018, 57(2): 022701. [28] WANG L, HUANG H T, SHEN D Y, et al. High power and short pulse width operation of passively Q-switched Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Applied Sciences, 2018, 8(5): 801. [29] UEHARA H, YASUHARA R, TOKITA S, et al. Characterization of Er∶Lu2O3 ceramic lasers for efficient emission at 2.8 μm[C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. June 25-29, 2017, Munich, Germany. IEEE, 2017: 1. [30] UEHARA H, YASUHARA R, TOKITA S, et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er∶Lu2O3 ceramic laser[J]. Optics Express, 2017, 25(16): 18677-18684. [31] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497-3507. [32] UEHARA H, TOKITA S, KAWANAKA J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002. [33] YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 μm Er∶Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14(1): 012001. [34] HOU W T, ZHAO H Y, LI N, et al. Spectroscopic properties of Er∶Lu2O3 crystal in mid-infrared emission[J]. Optical Materials, 2019, 98: 109508. [35] SCHWEIZER T, HEWAK D W, SAMSON B N, et al. Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass[J]. Optics Letters, 1996, 21(19): 1594-1596. [36] PUGLIESE D, BOETTI N G, LOUSTEAU J, et al. Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers[J]. Journal of Alloys and Compounds, 2016, 657: 678-683. |