[1] ZHANG B, HE S, YANG Q X, et al. Femtosecond laser modification of 6H-SiC crystals for waveguide devices[J]. Applied Physics Letters, 2020, 116(11): 111903. [2] RAJAVEL MUTHAIAH V M, MEKA S R, VENKATA MANOJ KUMAR B. Processing of heat-treated silicon carbide-reinforced aluminum alloy composites[J]. Materials and Manufacturing Processes, 2019, 34(3): 312-320. [3] MANJU M S, AJITH K M, VALSAKUMAR M C. Strain induced anisotropic mechanical and electronic properties of 2D-SiC[J]. Mechanics of Materials, 2018, 120: 43-52. [4] LANGENDERFER M J, FAHRENHOLTZ W G, CHERTOPALOV S, et al. Detonation synthesis of silicon carbide nanoparticles[J]. Ceramics International, 2020, 46(5): 6951-6954. [5] ZHENG X H, CHEN X B, ZHANG L, et al. Perfect spin and valley polarized quantum transport in twisted SiC nanoribbons[J]. 2D Materials, 2017, 4(2): 025013. [6] WEITZEL C E, PALMOUR J W, CARTER C H, et al. Silicon carbide high-power devices[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1732-1741. [7] LEE W H, YAO X H. First principle investigation of phase transition and thermodynamic properties of SiC[J]. Computational Materials Science, 2015, 106: 76-82. [8] LI W H, HAHN E N, BRANICIO P S, et al. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression[J]. International Journal of Plasticity, 2021, 138: 102923. [9] FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading[J]. Mechanics of Materials, 2022, 164: 104139. [10] YAN W J, QIN X M, ZHANG Z Z, et al. Evolution of microstructure during rapid solidification of SiC under high pressure[J]. Advances in Condensed Matter Physics, 2022, 2022: 7823211. [11] WU Z H, LIU W D, ZHANG L C, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67. [12] MAJID A, FATIMA S A, KHAN S U D, et al. Assessment of 2H-SiC based intercalation compound for use as anode in lithium ion batteries[J]. Ceramics International, 2020, 46(4): 5297-5305. [13] MAJID A, HUSSAIN K, KHAN S U D, et al. First principles study of SiC as the anode in sodium ion batteries[J]. New Journal of Chemistry, 2020, 44(21): 8910-8921. [14] NGUYEN T K, PHAN H P, DINH T, et al. Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures[J]. Materials & Design, 2018, 156: 441-445. [15] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4): 1-16. [16] TETER D M. Computational alchemy: the search for new superhard materials[J]. MRS Bulletin, 1998, 23(1): 22-27. [17] KIDOKORO Y, UMEMOTO K, HIROSE K, et al. Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets[J]. American Mineralogist, 2017, 102(11): 2230-2234. [18] KIRSCHMAN R. Status of silicon carbide (SiC) as a wide bandgap semiconductor for high temperature applications: a review[J]. High-Temperature Electronics, 2009: 511-524. [19] YOSHIDA M, ONODERA A, UENO M, et al. Pressure-induced phase transition in SiC[J]. Physical Review B, 1993, 48(14): 10587-10590. [20] SEKINE T, KOBAYASHI T. Shock compression of 6H polytype SiC to 160 GPa[J]. Physical Review B, 1997, 55(13): 8034-8037. [21] DAVIAU K, LEE K K M. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell[J]. Physical Review B, 2017, 95(13): 134108. [22] NISR C, MENG Y, MACDOWELL A A, et al. Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets[J]. Journal of Geophysical Research: Planets, 2017, 122(1): 124-133. [23] TRACY S J, SMITH R F, WICKS J K, et al. Insitu observation of a phase transition in silicon carbide under shock compression using pulsed X-ray diffraction[J]. Physical Review B, 2019, 99(21): 214106. [24] CHANG K J, COHEN M L. Ab initio pseudopotential study of structural and high-pressure properties of SiC[J]. Physical Review B, 1987, 35(15): 8196-8201. [25] CATTI M. Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure[J]. Physical Review Letters, 2001, 87(3): 035504. [26] MIAO M S, LAMBRECHT W R L. Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure[J]. Physical Review B, 2003, 68(9): 092103. [27] DURANDURDU M. Pressure-induced phase transition of SiC[J]. Journal of Physics: Condensed Matter, 2004, 16(25): 4411-4417. [28] MIAO M S, LAMBRECHT W R L. Universal transition state for high-pressure zinc blende to rocksalt phase transitions[J]. Physical Review Letters, 2005, 94(22): 225501. [29] DURANDURDU M. Ab initiosimulations of the structural phase transformation of 2H-SiC at high pressure[J]. Physical Review B, 2007, 75(23): 235204. [30] EKER S, DURANDURDU M. Phase transformation of 6H-SiC at high pressure: an ab initio constant-pressure study[J]. EPL (Europhysics Letters), 2008, 84(2): 26003. [31] SALVADÓ M A, FRANCO R, PERTIERRA P, et al. Hysteresis and bonding reconstruction in the pressure-induced B3-B1 phase transition of 3C-SiC[J]. Physical Chemistry Chemical Physics, 2017, 19(34): 22887-22894. [32] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157. [33] RAN Z, ZOU C M, WEI Z J, et al. Phase transitions and elastic anisotropies of SiC polymorphs under high pressure[J]. Ceramics International, 2021, 47(5): 6187-6200. [34] LU Y P, HE D W, ZHU J, et al. First-principles study of pressure-induced phase transition in silicon carbide[J]. Physica B: Condensed Matter, 2008, 403(19/20): 3543-3546. [35] SHIMOJO F, KALIA R K, et al. Molecular dynamics simulation of structural transformation in silicon carbide under pressure[J]. Physical Review Letters, 2000, 84(15): 3338-3341. [36] CATTI M. First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS[J]. Physical Review B, 2002, 65(22): 224115. [37] 吕梦雅, 陈洲文, 李立新, 等. 3C-SiC 高压相变的理论研究[J]. 物理学报, 2006, 55(7): 3576-3580. LV M Y, CHEN Z W, LI L X, et al. Theoretical study of high pressure phase transition of 3C-SiC[J]. Acta Physica Sinica, 2006, 55(7): 3576-3580 (in Chinese). [38] EKER S, DURANDURDU M. Pressure-induced phase transformation of 4H-SiC: an ab initio constant-pressure study[J]. Europhysics Letters, 2009, 87(3): 36001. [39] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [40] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [41] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7): 073005. [42] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. [43] SINRQUOTKO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(29): 6989-7005. [44] 秦彦军, 张建强, 杨慧雅, 等. 单轴应变对本征和N掺杂4H-SiC电子结构的影响[J]. 原子与分子物理学报, 2025, 42(3): 179-185. QIN Y J, ZHANG J Q, YANG H Y, et al. Effect of uniaxial strain on electronic structure of intrinsic and N-doped 4H-SiC[J]. Journal of Atomic and Molecular Physics, 2025, 42(3): 179-185 (in Chinese). [45] JIANG Z Y, XU X H, WU H S, et al. Ab initio calculation of SiC polytypes[J]. Solid State Communications, 2002, 123(6/7): 263-266. [46] VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides[J]. 2004, 95(8): 3851-3879. [47] HARRIS G L. Properties of silicon carbide[M]. London: INSPEC, 1995. [48] XU P S, XIE C K, PAN H B, et al. Theoretical study on the band structure and optical properties of 4H-SiC[J]. Chinese Physics, 2004, 13(12): 2126-2129. |