欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (12): 2150-2159.

• 研究论文 • 上一篇    下一篇

新型红色荧光粉K5Gd(MoO4)4:xSm3+,yEu3+的发光性能分析

李明明1, 熊飞兵1,2, 杨伟斌1,2, 胡正开1, 白鑫1, 李婧1, 林雅晴1, 黄俊雄1   

  1. 1.厦门理工学院光电与通信工程学院,厦门 361024;
    2.厦门理工学院,福建省光电技术与器件重点实验室,厦门 361024
  • 收稿日期:2024-07-16 出版日期:2024-12-15 发布日期:2024-12-20
  • 通信作者: 熊飞兵,博士,教授。E-mail:1361099810@qq.com
  • 作者简介:李明明(1995—),女,河北省人,硕士研究生。E-mail:2366066142@qq.com
  • 基金资助:
    福建省自然科学基金(2020J01297);厦门理工学院研究生科技创新计划(YKJCX2023083,YKJCX2023072)

Analysis of Luminescence Performance of New Red Phosphor K5Gd(MoO4)4:xSm3+,yEu3+

LI Mingming1, XIONG Feibing1,2, YANG Weibin1,2, HU Zhengkai1, BAI Xin1, LI Jing1, LIN Yaqing1, HUANG Junxiong1   

  1. 1. School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China;
    2. Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
  • Received:2024-07-16 Online:2024-12-15 Published:2024-12-20

摘要: 本文采用高温固相法合成新型K5Gd(MoO4)4:xSm3+(x=0~0.10)及K5Gd(MoO4)4:0.04Sm3+,yEu3+(y=0.03~0.15)红色荧光粉,并通过X射线衍射仪(XRD)、荧光粉激发光谱,以及热猝灭分析系统、稳态-瞬态光谱仪等对荧光粉的光致激发光谱及荧光发射光谱、荧光猝灭性能等进行分析。研究表明:掺入Eu3+,Sm3+后的K5Gd(MoO4)4样品不含杂质相,且晶体的结构没有发生改变。在405 nm紫外光的激发下,K5Gd(MoO4)4:0.04Sm3+和K5Gd(MoO4)4:0.04Sm3+,0.12Eu3+可以发射出色坐标为(0.608 8,0.390 4)和(0.637 3, 0.359 2)的橙红光。在K5Gd(MoO4)4:xSm3+ (x=0~0.10)荧光粉样品中,随着Sm3+掺杂浓度的增加,荧光粉的发光强度先增强后减弱,最佳的掺杂浓度为x=0.04。在K5Gd(MoO4)4:0.04Sm3+,yEu3+(y=0.03~0.15)荧光粉样品中,Eu3+的发光强度随着掺杂浓度的增加呈先增加后减弱的趋势,且在y=0.12处发生浓度猝灭。当温度达到373 K时,K5Gd(MoO4)4:0.04Sm3+荧光粉样品的发光强度是293 K时的94.69%,K5Gd(MoO4)4:0.04Sm3+,0.12Eu3+荧光粉样品的荧光强度是293 K时的76.3%,表明两种荧光粉样品都具有较好的热稳定性。色坐标图表明随着Eu3+掺杂量的提高,色坐标从橙红色区域向纯红色区域发生微量移动。由此可见,K5Gd(MoO4)4:xSm3+和K5Gd(MoO4)4:0.04Sm3+,yEu3+荧光粉样品都具有作为红色荧光粉应用于白光LED的潜力。

关键词: K5Gd(MoO4)4:xSm3+,yEu3+, 高温固相法, 红色荧光粉, 荧光猝灭, 色坐标

Abstract: A series of K5Gd (MoO4)4:xSm3+(x=0~0.10) and K5Gd (MoO4)4:0.04Sm3+, yEu3+(y=0.03~0.15) red phosphors were synthesized by high-temperature solid-phase method in this paper. The photoluminescence spectra, fluorescence emission spectra, and fluorescence quenching performance of the phosphor were analyzed by X-ray diffraction (XRD), fluorescence excitation spectra, thermal quenching analysis system, and steady-state transient spectrometer. Results show that the samples synthesized by doping Eu3+and Sm3+into K5Gd (MoO4)4 don't contain impurity phases, and the crystal structure remains unchanged. Under the excitation of 405 nm ultraviolet light, K5Gd (MoO4)4:0.04Sm3+and K5Gd (MoO4)4:0.04Sm3+, 0.12Eu3+can emit excellent red light with the CIE coordinates of (0.6088, 0.3904) and (0.637 3, 0.359 2). In the K5Gd(MoO4)4:xSm3+(x=0~0.10) samples, as the Sm3+doping concentration increases, the luminescence intensity of the phosphor first increases and then decreases, the optimal doping concentration is x=0.04. In the K5Gd(MoO4)4:0.04Sm3+,yEu3+(y=0.03~0.15) samples, the luminescence intensity of Eu3+first increases and then decreases with increasing Eu3+ doping concentration, and concentration quenching occur at y=0.12. When the temperature reaches 373 K, the fluorescence intensity of the K5Gd(MoO4)4:0.04Sm3+phosphor sample is 94.69% of that at 293 K, while the fluorescence intensity of the K5Gd(MoO4)4:0.04Sm3+, 0.12Eu3+phosphor sample is 76.3% of that at 293 K, indicating their good thermal stability. The color coordinate graph shows that, doping of Eu3+ leads to the color coordinate shifts slightly from the orange red region to the pure red region. Both K5Gd(MoO4)4:xSm3+ and K5Gd(MoO4)4:0.04Sm3+, yEu3+phosphor samples have the potential to be used as red phosphors for white light LED.

Key words: K5Gd(MoO4)4:xSm3+, yEu3+, high-temperature solid-phase method, red phosphor, fluorescence quenching, color coordinate

中图分类号: