[1] TONG J H, PENG B L, KONTOGEORGIS G M, et al. Behavior of the aqueous sodium chloride solutions from molecular simulations and theories[J]. Journal of Molecular Liquids, 2023, 371: 121086. [2] KNIPPING E M, LAKIN M J, FOSTER K L, et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464): 301-306. [3] OUM K W, LAKIN M J, DEHAAN D O, et al. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles[J]. Science, 1998, 279(5347): 74-77. [4] FINLAYSON-PITTS B J, HEMMINGER J C. Physical chemistry of airborne sea salt particles and their components[J]. The Journal of Physical Chemistry A, 2000, 104(49): 11463-11477. [5] HIROKAWA J, ONAKA K, KAJII Y, et al. Heterogeneous processes involving sodium halide particles and ozone: molecular bromine release in the marine boundary layer in the absence of nitrogen oxides[J]. Geophysical Research Letters, 1998, 25(13): 2449-2452. [6] MOUCˇKA F, NEZBEDA I, SMITH W R. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations[J]. The Journal of Chemical Physics, 2013, 138(15): 154102. [7] NEZBEDA I, MOUCˇKA F, SMITH W R. Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility[J]. Molecular Physics, 2016, 114(11): 1665-1690. [8] BAKKER H J. Structural dynamics of aqueous salt solutions[J]. Chemical Reviews, 2008, 108(4): 1456-1473. [9] AI Z, LI S J, ZHAO Y L, et al. Atomic insights into flotation separation of KCl and NaCl from a new viewpoint of hydration layer: a molecular dynamic study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125071. [10] CHOUDHURI J R, CHANDRA A. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules[J]. The Journal of Chemical Physics, 2014, 141(19): 194705. [11] KOMORI K, TERAO T. Cluster-size distribution of ions in concentrated aqueous NaCl solutions: molecular dynamics simulations[J]. Chemical Physics Letters, 2023, 825: 140627. [12] SMITH D E, DANG L X. Computer simulations of NaCl association in polarizable water[J]. Journal of Chemical Physics, 1994, 100(5): 3757-3766. [13] SEAL S, DOBLHOFF-DIER K, MEYER J. Dielectric decrement for aqueous NaCl solutions: effect of ionic charge scaling in nonpolarizable water force fields[J]. The Journal of Physical Chemistry B, 2019, 123(46): 9912-9921. [14] LIU Y, HUANG K M, GOU D Z, et al. Electrical conductivity variations of aqueous NaCl solutions with microwave field: a molecular dynamics study[J]. Chemical Physics, 2021, 545: 111134. [15] GE S, ZHANG X X, CHEN M. Viscosity of NaCl aqueous solution under supercritical conditions: a molecular dynamics simulation[J]. Journal of Chemical & Engineering Data, 2011, 56(4): 1299-1304. [16] 王丽娜, 尚洁莹, 张文惠, 等. 采用分子动力学方法研究氯化钠水溶液的微观结构[J]. 原子与分子物理学报, 2023, 40(4): 71-78. WANG L N, SHANG J Y, ZHANG W H, et al. Microstructures of sodium chloride aqueous solution investigated by molecular dynamics method[J]. Journal of Atomic and Molecular Physics, 2023, 40(4): 71-78 (in Chinese). [17] 孙 炜, 陈 中, 黄素逸. 浓度对NaCl水溶液影响的分子动力学模拟[J]. 武汉理工大学学报, 2005, 27(7): 26-29. SUN W, CHEN Z, HUANG S Y. Molecular dynamics simulations of concentration effects on aqueous NaCl solutions[J]. Journal of Wuhan University of Technology, 2005, 27(7): 26-29 (in Chinese). [18] REN G, SHI R, WANG Y T. Structural, dynamic, and transport properties of concentrated aqueous sodium chloride solutions under an external static electric field[J]. The Journal of Physical Chemistry B, 2014, 118(16): 4404-4411. [19] UCHIDA H, MATSUOKA M. Molecular dynamics simulation of solution structure and dynamics of aqueous sodium chloride solutions from dilute to supersaturated concentration[J]. Fluid Phase Equilibria, 2004, 219(1): 49-54. [20] 王丽娜, 张文惠, 尚洁莹, 等. 氯化钾水溶液微观结构的分子动力学模拟研究[J]. 原子与分子物理学报, 2024, 41(1): 135-142. WANG L N, ZHANG W H, SHANG J Y, et al. Molecular dynamics simulation of microstructures of potassium chloride aqueous solution[J]. Journal of Atomic and Molecular Physics, 2024, 41(1): 135-142 (in Chinese). [21] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271. [22] BONFRATE S, FERRÉ N, HUIX-ROTLLANT M. Analytic gradients for the electrostatic embedding QM/MM model in periodic boundary conditions using particle-mesh Ewald sums and electrostatic potential fitted charge operators[J]. Journal of Chemical Theory and Computation, 2024, 20(10): 4338-4349. [23] LANGFELDT F. On the validity of periodic boundary conditions for modelling finite plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2024, 155(2): 837-845. [24] TRINH T T, HAMMER M, SHARMA V, et al. Mie-FH: a quantum corrected pair potential in the LAMMPS simulation package for hydrogen mixtures[J]. SoftwareX, 2024, 26: 101716. [25] HAMMOND K D. Parallel point defect identification in molecular dynamics simulations without post-processing: a compute and dump style for LAMMPS[J]. Computer Physics Communications, 2020, 247: 106862. [26] 牛自得, 程芳琴. 水盐体系相图及其应用[M]. 天津: 天津大学出版社, 2002. NIU Z D, CHENG F Q. Phase diagram of water and salt system and its application[M]. Tianjin: Tianjin University Press, 2002 (in Chinese). [27] 何曼君, 张红东, 陈维孝, 等. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2007. HE M J, ZHANG H D, CHEN W X, et al. Polymer physics[M]. 3rd ed. Shanghai: Fudan University Press, 2007 (in Chinese). [28] BARENBAUM A, KLIMOV D. Theoretical model Anderson-Schulz-Flory within the framework of studying the mechanism of polycondensation synthesis[J]. Inorganic Chemistry Communications, 2020, 112: 107664. [29] 关 岚, 黄定海, 盛 京. 聚合物溶液体系玻璃化转变温度与组成之间的关系[J]. 高分子通报, 2007(11): 53-59. GUAN L, HUANG D H, SHENG J. The relationship between glass transition temperature and composition in polymer solution systems[J]. Chinese Polymer Bulletin, 2007(11): 53-59 (in Chinese). |