欢迎访问《人工晶体学报》官方网站,今天是 2025年8月14日 星期四 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (1): 49-58.DOI: 10.16553/j.cnki.issn1000-985x.2024.0189

• 研究论文 • 上一篇    下一篇

磁场辅助法快捷制备Fe3O4@C光子晶体柔性复合薄膜

王治强1,2, 张齐3, 梁颖4, 王文欣1, 陈琦1   

  1. 1.海南大学海洋科学与工程学院,海口 570228;
    2.海南大学材料科学与工程学院,海口 570228;
    3.海南大学化学化工学院,海口 570228;
    4.海南大学,南海海洋资源利用国家重点实验室,海口 570228
  • 收稿日期:2024-09-02 出版日期:2025-01-15 发布日期:2025-01-22
  • 通信作者: 王文欣,博士,副研究员。E-mail:wenxinwang@hainanu.edu.cn
  • 作者简介:王治强(1998—),男,四川省人,硕士研究生。E-mail:963246507@qq.com
  • 基金资助:
    国家自然科学基金(12262011,52063014)

Fast Preparation of Fe3O4@C Photonic Crystal Flexible Composite Films by Magnetic Field Assisted Method

WANG Zhiqiang1,2, ZHANG Qi3, LIANG Ying4, WANG Wenxin1, CHEN Qi1   

  1. 1. School of Marine Science and Engineering, Hainan University, Haikou 570228, China;
    2. School of Materials Science and Engineering, Hainan University, Haikou 570228, China;
    3. School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China;
    4. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
  • Received:2024-09-02 Online:2025-01-15 Published:2025-01-22

摘要: 本文采用垂直沉降法、自然沉降法、磁场辅助法将水热法合成的Fe3O4@C纳米粒子排列成Fe3O4@C光子晶体薄膜。结果表明:垂直沉降法制备光子晶体薄膜耗时长,制得的薄膜不均匀,且薄膜只能贴合在特定基底材料上,难以分离;自然沉降法相比垂直沉降法制得的光子晶体薄膜更均匀,但表面易存在不平整的现象,仍然易贴合在基底材料表面,强行分离会导致光子晶体薄膜破碎;磁场辅助法不仅能使Fe3O4@C纳米粒子在更短时间内排列出鲜艳的结构色,还能使Fe3O4@C纳米粒子在光固化聚氨酯丙烯酸酯内部排列形成周期性有序结构,使光子晶体不裸露在空气中,减少外界因素的干扰,提升光子晶体稳定性,制得厚度均匀、表面光滑的Fe3O4@C光子晶体柔性复合薄膜。对Fe3O4@C纳米粒子进行超声处理对于获得色彩鲜艳的结构颜色至关重要,只有经过超声处理去除表面杂质的Fe3O4@C纳米粒子才能在磁场的辅助下排列形成周期性有序结构显现结构色。磁场辅助法一定程度上缩短了光子晶体柔性薄膜的制备时间,通过磁场辅助法制得的光子晶体柔性复合薄膜更均匀且表面光滑,也提升了光子晶体的稳定性,有利于促进光子晶体在安全防伪、伪装涂层、传感器、太阳能电池、生物医学等更多领域的应用。

关键词: 光子晶体, Fe3O4@C, 纳米粒子, 柔性薄膜, 磁场辅助法, 垂直沉降法, 自然沉降法, 结构色

Abstract: In this paper, the Fe3O4@C nanoparticles were synthesized by hydrothermal method and then arranged into Fe3O4@C photonic crystal films by vertical deposition method, natural deposition method, and magnetic field assisted method, respectively. The vertical deposition method for preparing photonic crystal films is time-consuming, and the resulting films are non-uniform. Additionally, these films can only be adhered to specific substrate materials, making them difficult to separate. Natural deposition produces more uniform photonic crystal films, but the surfaces are prone to unevenness. Additionally, these films still adhere to the substrate material and forcibly separating them can cause the photonic crystal films to break. The magnetic field assisted method can not only make the Fe3O4@C nanoparticles arrange into bright structural colors in a short period of time, but also make the Fe3O4@C nanoparticles arrange into periodic ordered structures in the photocurable polyurethane acrylate. This prevents the photonic crystal from being exposed to the air, reducing interference from external factors and enhancing the stability of the photonic crystal. The resulting Fe3O4@C photonic crystal flexible composite films are uniform in thickness and smooth on the surface. Ultrasonic treatment of Fe3O4@C nanoparticles is essential to obtain bright structural colors. Only the Fe3O4@C nanoparticles which have been ultrasonic treated to remove surface impurities can be arranged into periodic ordered structures with the help of magnetic field to display structural colors. Magnetic field assisted method can reduce the preparation time of the photonic crystal flexible film to some extent. The photonic crystal flexible composite film prepared by the magnetic field assisted method is more uniform and smooth, which also improves the stability of photonic crystal. It is helpful to promote the application of photonic crystal in security anti-counterfeiting, camouflage coating, sensors, solar cells, biomedicine and other fields.

Key words: photonic crystal, Fe3O4@C, nanoparticle, flexible film, magnetic field assisted method, vertical deposition method, natural deposition method, structural color

中图分类号: