[1] PEARTON S J, YANG J, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [2] AHMADI E, OSHIMA Y. Materials issues and devices of α- and β-Ga2O3[J]. Journal of Applied Physics, 2019, 126(16): 160901. [3] MEZZADRI F, CALESTANI G, BOSCHI F, et al. Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire[J]. Inorganic Chemistry, 2016, 55(22): 12079-12084. [4] FORNARI R, PAVESI M, MONTEDORO V, et al. Thermal stability of ε-Ga2O3 polymorph[J]. Acta Materialia, 2017, 140: 411-416. [5] LIU Z, HUANG Y Q, LI H R, et al. Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector[J]. Vacuum, 2020, 177: 109425. [6] WANG Y H, ZHANG Q Y, SHEN J Y, et al. Self-driven solar-blind photodetector based on ε-Ga2O3/SiC heterojunction[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(3): 44-49. [7] POLYAKOV A Y, LEE I H, MIAKONKIKH A, et al. Anisotropy of hydrogen plasma effects in bulk n-type β-Ga2O3[J]. Journal of Applied Physics, 2020, 127(17): 175702. [8] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [9] KIM J, TAHARA D, MIURA Y, et al. First-principle calculations of electronic structures and polar properties of (κ, ε)-Ga2O3[J]. Applied Physics Express, 2018, 11(6): 061101. [10] ZIESCHE P, KURTH S, PERDEW J P. Density functionals from LDA to GGA[J]. Computational Materials Science, 1998, 11(2): 122-127. [11] MACCIONI M B, FIORENTINI V. Phase diagram and polarization of stable phases of (Ga1-xInx)2O3[J]. Applied Physics Express, 2016, 9(4): 041102. [12] MULAZZI M, REICHMANN F, BECKER A, et al. The electronic structure of ε-Ga2O3[J]. APL Materials, 2019, 7(2): 022522. [13] CORA I, MEZZADRI F, BOSCHI F, et al. The real structure of ε-Ga2O3 and its relation to κ-phase[J]. CrystEngComm, 2017, 19(11): 1509-1516. [14] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Development of gallium oxide power devices[J]. Physica Status Solidi (a), 2014, 211(1): 21-26. [15] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [16] ZHANG L Y, YAN J L, ZHANG Y J, et al. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N-Zn co-doped β-Ga2O3[J]. Physica B: Condensed Matter, 2012, 407(8): 1227-1231. [17] GUO S D, DU H M. Piezoelectric properties of Ga2O3: a first-principle study[J]. The European Physical Journal B, 2020, 93(1): 7. [18] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies[J]. npj Computational Materials, 2015, 1(1): 1-15. [19] LYONS J L. A survey of acceptor dopants for β-Ga2O3 [J]. Semiconductor Science and Technology, 2018, 33(5): 05LT02. [20] ZORODDU A, BERNARDINI F, RUGGERONE P, et al. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory[J]. Physical Review B, 2000, 64: 045208. [21] WEI Y, LI X, YANG J, et al. Interaction between hydrogen and gallium vacancies in β-Ga2O3[J]. Scientific Reports, 2018, 8(1): 10142. |