
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1146-1159.DOI: 10.16553/j.cnki.issn1000-985x.2025.0056
收稿日期:2025-03-21
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
肖宝,博士,助理研究员。E-mail:fsnhxiaobao@163.com;张滨滨,博士,副研究员。E-mail:zbb@nwpu.edu.cn
作者简介:李宁(1997—),男,内蒙古自治区人,博士研究生。E-mail:lining23@nudt.edu.cn
LI Ning1(
), ZHANG Xinlei2, XIAO Bao3(
), ZHANG Binbin1(
)
Received:2025-03-21
Online:2025-07-20
Published:2025-07-30
摘要: CsPbBr3晶体因高原子序数、优异的载流子输运性能及室温工作特性,成为新一代半导体辐射探测器的核心候选材料。然而,晶体中的缺陷(如点缺陷、孪晶、夹杂相)会显著影响其性能。本综述系统分析了CsPbBr3中缺陷的形成机制及其对载流子传输的制约:晶格极化子效应主导本征散射,点缺陷(如Pb间隙原子)通过深能级陷阱加剧载流子复合;铁弹畴(孪晶)因界面势垒导致载流子局域化;夹杂相(如CsPb2Br5)通过光散射和非共格界面降低迁移率与电阻率。研究揭示了熔融法与溶液法生长动力学对缺陷分布的差异,并提出了化学计量调控、溶剂工程及退火工艺等优化策略。尽管CsPbBr3在X/γ射线探测中展现出接近商用CZT的能谱分辨率(如1.4%@662 keV),但缺陷动态演化与离子迁移仍限制了其稳定性。未来需聚焦极化子-缺陷协同机制的分析、精准缺陷调控技术的开发及新型器件结构设计,以推动其在核医学成像、深空探测等领域的实际应用。
中图分类号:
李宁, 张欣雷, 肖宝, 张滨滨. 辐射探测器用CsPbBr3晶体的缺陷研究进展[J]. 人工晶体学报, 2025, 54(7): 1146-1159.
LI Ning, ZHANG Xinlei, XIAO Bao, ZHANG Binbin. Research Progress on Defects in CsPbBr3 Crystals for Radiation Detectors[J]. Journal of Synthetic Crystals, 2025, 54(7): 1146-1159.
图1 卤化物钙钛矿材料在高能射线探测领域的发展过程[13,16-19,21-24]
Fig.1 Advancements process in halide perovskite materials for high-energy radiation detection[13,16-19,21-24]
| Sample | Bias/V | E/(V·mm-1) | kVp/keV | Sensitivity/(µC·Gy-1·cm-2) | LOD/(nGy-1·s-1) | Year | Reference |
|---|---|---|---|---|---|---|---|
| Film | 5 | 30 | 55 684 | 215 | 2019 | [ | |
| Film | 110 | 35 | 1 700 | 53 | 2019 | [ | |
| Film | 1 200 | 70 | 1 450 | 500 | 2020 | [ | |
| Film | 1 000 | 50 | 9 085 | 103.6 | 2022 | [ | |
| Film | 7 | 20 | 823.12 | 14.61 | 2023 | [ | |
| Film | 120 | 50 | 46 961 | 321 | 2024 | [ | |
| Crystal | 8 | 40 | 770 | 2020 | [ | ||
| Crystal | 40 | 20 | 80 | 1 256 | 2020 | [ | |
| Crystal | 5 | 5 | 40 | 4 086 | 700 | 2021 | [ |
| Crystal | 50 | 40 | 6 021.99 | 1 890 | 2021 | [ | |
| Crystal | 280 | 50 | 8 800 | 0.02 | 2022 | [ | |
| Crystal | 400 | 267 | 120 | 34 449 | 52.6 | 2023 | [ |
| Crystal | 1 000 | 435 | 10 283 | 22 | 2023 | [ | |
| Crystal | 100 | 70 | 9 047 | 104 | 2023 | [ | |
| Crystal | 5 | 30 338 | 2023 | [ | |||
| Crystal | 500 | 120 | 46 180 | 10.81 | 2024 | [ | |
| Crystal | 180 | 50 | 9 634 | 1.84 | 2024 | [ |
表1 CsPbBr3晶体X射线探测器件及响应
Table 1 CsPbBr3 crystal X-ray detector devices and their response
| Sample | Bias/V | E/(V·mm-1) | kVp/keV | Sensitivity/(µC·Gy-1·cm-2) | LOD/(nGy-1·s-1) | Year | Reference |
|---|---|---|---|---|---|---|---|
| Film | 5 | 30 | 55 684 | 215 | 2019 | [ | |
| Film | 110 | 35 | 1 700 | 53 | 2019 | [ | |
| Film | 1 200 | 70 | 1 450 | 500 | 2020 | [ | |
| Film | 1 000 | 50 | 9 085 | 103.6 | 2022 | [ | |
| Film | 7 | 20 | 823.12 | 14.61 | 2023 | [ | |
| Film | 120 | 50 | 46 961 | 321 | 2024 | [ | |
| Crystal | 8 | 40 | 770 | 2020 | [ | ||
| Crystal | 40 | 20 | 80 | 1 256 | 2020 | [ | |
| Crystal | 5 | 5 | 40 | 4 086 | 700 | 2021 | [ |
| Crystal | 50 | 40 | 6 021.99 | 1 890 | 2021 | [ | |
| Crystal | 280 | 50 | 8 800 | 0.02 | 2022 | [ | |
| Crystal | 400 | 267 | 120 | 34 449 | 52.6 | 2023 | [ |
| Crystal | 1 000 | 435 | 10 283 | 22 | 2023 | [ | |
| Crystal | 100 | 70 | 9 047 | 104 | 2023 | [ | |
| Crystal | 5 | 30 338 | 2023 | [ | |||
| Crystal | 500 | 120 | 46 180 | 10.81 | 2024 | [ | |
| Crystal | 180 | 50 | 9 634 | 1.84 | 2024 | [ |
| Detector | 241Am α | 241Am γ | 57Co γ | 137Cs γ | Year | Reference | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias/V | E/(V·cm-1) | ER/% | Bias/V | E/(V·cm-1) | ER/% | Bias/V | E/(V·cm-1) | ER/% | Bias/V | E/(V·cm-1) | ER/% | |||
| Planar | 150 | 1 167 | 9.60 | 150 | 1 167 | 3.90 | 900 | 7 087 | 3.80 | 2018 | [ | |||
| Planar | 90 | 15.00 | 100 | 1 167 | 4.60 | 2019 | [ | |||||||
| Planar | 700 | 2 800 | 5.50 | 2020 | [ | |||||||||
| Planar | 350 | 1 522 | 11 | 2020 | [ | |||||||||
| Planar | 500 | 1 976 | 28.30 | 500 | 1 976 | 13.10 | 500 | 1 976 | 5.50 | 2020 | [ | |||
| Planar | 500 | 3 759 | 5.50 | 500 | 3 759 | 3.20 | 500 | 1.40 | 2021 | [ | ||||
| Quasi-hemispherical | 1 600 | 1.80 | 2021 | [ | ||||||||||
| Pixel | 500 | 1.40 | 2021 | [ | ||||||||||
| Planar | 240 | 2 400 | 11.10 | 300 | 1 000 | 27.10 | 500 | 1 667 | 12.20 | 2022 | [ | |||
| Planar | 400 | 2 000 | 4.90 | 2022 | [ | |||||||||
| Planar | 350 | 18.00 | 350 | 12.00 | 2022 | [ | ||||||||
| Planar | 350 | 2 | 2022 | [ | ||||||||||
| Planar | 100 | 7.66 | 600 | 13.50 | 2022 | [ | ||||||||
| Planar | 700 | 8 750 | 5.70 | 2022 | [ | |||||||||
| Quasi-hemispherical | 200 | 1 250 | 11.76 | 200 | 1 250 | 11.47 | 2022 | [ | ||||||
| Planar | 200 | 4.40 | 2023 | [ | ||||||||||
| Planar | 300 | 11.40 | 300 | 6.10 | 2023 | [ | ||||||||
| Planar | 800 | 4 706 | 7.50 | 2023 | [ | |||||||||
| Quasi-hemispherical | 100 | 9.91 | 2023 | [ | ||||||||||
| Pixel | 700 | 2 892 | 7.31 | 2023 | [ | |||||||||
| Planar | 400 | 12.85 | 2024 | [ | ||||||||||
| Planar | 600 | 7.20 | 2024 | [ | ||||||||||
| Planar | 200 | 3.70 | 2024 | [ | ||||||||||
| Planar | 320 | 2 667 | 16.00 | 12.50 | 13.30 | 2024 | [ | |||||||
| Planar | 800 | 3 636 | 3.90 | 2024 | [ | |||||||||
| Planar | 90 | 1.10 | 2024 | [ | ||||||||||
| Planar | 500 | 4.80 | 2024 | [ | ||||||||||
| Planar | 500 | 8.90 | 500 | 8.00 | 500 | 2.30 | 2025 | [ | ||||||
| Quasi-hemispherical | 500 | 8.40 | 500 | 6.20 | 500 | 2.20 | 2025 | [ | ||||||
| VFG | 3 400 | 3 333 | 1.50 | 2025 | [ | |||||||||
表2 CsPbBr3晶体γ射线探测器件及响应
Table 2 CsPbBr3 crystal γ-ray detector devices and their response
| Detector | 241Am α | 241Am γ | 57Co γ | 137Cs γ | Year | Reference | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias/V | E/(V·cm-1) | ER/% | Bias/V | E/(V·cm-1) | ER/% | Bias/V | E/(V·cm-1) | ER/% | Bias/V | E/(V·cm-1) | ER/% | |||
| Planar | 150 | 1 167 | 9.60 | 150 | 1 167 | 3.90 | 900 | 7 087 | 3.80 | 2018 | [ | |||
| Planar | 90 | 15.00 | 100 | 1 167 | 4.60 | 2019 | [ | |||||||
| Planar | 700 | 2 800 | 5.50 | 2020 | [ | |||||||||
| Planar | 350 | 1 522 | 11 | 2020 | [ | |||||||||
| Planar | 500 | 1 976 | 28.30 | 500 | 1 976 | 13.10 | 500 | 1 976 | 5.50 | 2020 | [ | |||
| Planar | 500 | 3 759 | 5.50 | 500 | 3 759 | 3.20 | 500 | 1.40 | 2021 | [ | ||||
| Quasi-hemispherical | 1 600 | 1.80 | 2021 | [ | ||||||||||
| Pixel | 500 | 1.40 | 2021 | [ | ||||||||||
| Planar | 240 | 2 400 | 11.10 | 300 | 1 000 | 27.10 | 500 | 1 667 | 12.20 | 2022 | [ | |||
| Planar | 400 | 2 000 | 4.90 | 2022 | [ | |||||||||
| Planar | 350 | 18.00 | 350 | 12.00 | 2022 | [ | ||||||||
| Planar | 350 | 2 | 2022 | [ | ||||||||||
| Planar | 100 | 7.66 | 600 | 13.50 | 2022 | [ | ||||||||
| Planar | 700 | 8 750 | 5.70 | 2022 | [ | |||||||||
| Quasi-hemispherical | 200 | 1 250 | 11.76 | 200 | 1 250 | 11.47 | 2022 | [ | ||||||
| Planar | 200 | 4.40 | 2023 | [ | ||||||||||
| Planar | 300 | 11.40 | 300 | 6.10 | 2023 | [ | ||||||||
| Planar | 800 | 4 706 | 7.50 | 2023 | [ | |||||||||
| Quasi-hemispherical | 100 | 9.91 | 2023 | [ | ||||||||||
| Pixel | 700 | 2 892 | 7.31 | 2023 | [ | |||||||||
| Planar | 400 | 12.85 | 2024 | [ | ||||||||||
| Planar | 600 | 7.20 | 2024 | [ | ||||||||||
| Planar | 200 | 3.70 | 2024 | [ | ||||||||||
| Planar | 320 | 2 667 | 16.00 | 12.50 | 13.30 | 2024 | [ | |||||||
| Planar | 800 | 3 636 | 3.90 | 2024 | [ | |||||||||
| Planar | 90 | 1.10 | 2024 | [ | ||||||||||
| Planar | 500 | 4.80 | 2024 | [ | ||||||||||
| Planar | 500 | 8.90 | 500 | 8.00 | 500 | 2.30 | 2025 | [ | ||||||
| Quasi-hemispherical | 500 | 8.40 | 500 | 6.20 | 500 | 2.20 | 2025 | [ | ||||||
| VFG | 3 400 | 3 333 | 1.50 | 2025 | [ | |||||||||
图3 利用热激电流(TSC)表征CsPbBr3的点缺陷[46,70]。(a)熔体法;(b)溶液法
Fig.3 Point defects in CsPbBr3 charactered using thermally stimulated current (TSC) technology[46,70]. (a) Melt method; (b) solution method
图4 原料提纯后生长的CsPbBr3晶体中杂质含量对比[46,70]。(a)溶液法再结晶提纯;(b)区熔法提纯
Fig.4 Comparison of impurity content in CsPbBr3 crystal grown after purification of raw materials[46,70]. (a) Purified using a solution recrystallization method; (b) purified by zone refining
图6 CsPbBr3晶体中两种孪晶结构[74]。(a)(121)反映孪晶的晶胞对应关系与界面匹配关系示意图;(b)沿[101]的90°旋转孪晶的晶胞对应关系与界面匹配关系示意图
Fig.6 Two twin structures in CsPbBr3 crystals[74]. (a) Schematic diagrams of the (121) reflection twin, illustrating the unit cell correspondence and interface matching relationship; (b) schematic diagrams of the 90° rotation twin along the [101] direction, illustrating the unit cell correspondence and interface matching relationship
图8 (a)CsPbBr3单晶薄膜的相变前后原位光镜照片;(b)、(c)响应度、外量子效率和探测率比[76]
Fig.8 (a) In situ optical microscopy images of CsPbBr3 single-crystal thin film before and after phase transition; (b), (c) external quantum efficiency, and specific detectivity performance[76]
图9 熔体法生长CsPbBr3晶体中的夹杂相[52]。QC-1(a)、QC-2(b)与QC-3(c)的固液界面SEM照片,显示界面形貌逐步平坦化;对应QC-1(d)、QC-2(e)及QC-3(f)多晶区域的高倍SEM照片,红色虚线标注次生相(如CsPb2Br5)边界
Fig.9 Inclusion phases in melt-grown CsPbBr3 crystals[52]. SEM images taken on the solid-liquid interface of QC-1 (a), QC-2 (b), and QC-3 (c), showing the interfaces were gradually flattened, and high magnification SEM images taken on the polycrystalline regions of QC-1 (d), QC-2 (e), and QC-3 (f), respectively, the red lines outline the secondary phases[52]
图10 溶液法生长CsPbBr3晶体中的夹杂相[78]。(a)~(c)具有规则多面体形态的明确第二相缺陷的典型SEM照片;(d)~(f)基于观察的实际形貌,由低指数基体晶面(100)和(110)构成的第二相缺陷理想晶体模型;(g)第二相缺陷的形态演化示意图
Fig.10 Inclusion phases in solution-grown CsPbBr3 crystals[78]. (a)~(c) Typical SEM images of well-defined SP defects with regular polyhedral morphologies; (d)~(f) ideal crystal model of SP defects bounded by low index matrix facets (100) and (110) based on the observed actual morphology; (g) morphological evolution schematic of the SP defects
图11 (a)、(b)刻蚀处理后的CPB-1样品中SP颗粒分布及其尺寸统计直方图;(c)、(d)刻蚀处理后的CPB-2样品中SP颗粒分布;(e)CPB-1和CPB-2在1 V偏压下的I-t曲线;(f)铯铅溴钙钛矿(CsPbBr3)基体与SP颗粒在241Am放射源(5.48 MeV α粒子)辐照下的载流子传输示意图;(g)、(h)通过线性拟合得到的CPB-1和CPB-2载流子迁移率;(i)相同电场强度(200 V·cm?1)下,CPB-1与CPB-2的α粒子诱导脉冲波形及其上升时间(tr)对比[77]
Fig.11 (a), (b) SP particles distribution and size histogram in etched CPB-1; (c), (d) SP particles in etched CPB-2, (e) I-t curves for CPB-1 and CPB-2 at 1 V; (f) schematic diagram of carrier transport in CsPbBr3 matrix and SP particles under 241Am @5.48 MeV α particles irradiation; (g), (h) carrier mobility by linear fitting for CPB-1 and CPB-2; (i) α particles induced pulse shapes and the rise time (tr) under the same electric field strength (200 V·cm-1) for CPB-1 and CPB-2[77]
| [1] | 朱世富, 赵北君, 王瑞林, 等. 室温半导体核辐射探测器新材料及其器件研究[J]. 人工晶体学报, 2004, 33(1): 6-12. |
| ZHU S F, ZHAO B J, WANG R L, et al. Studies of new materials and devices for room-temperature nuclear radiation detectors[J]. Journal of Synthetic Crystals, 2004, 33(1): 6-12 (in Chinese). | |
| [2] | 李 霞, 褚君浩, 李陇遐, 等. 室温CdZnTe核辐射探测器研究进展[J]. 半导体技术, 2008, 33(11): 941-946. |
| LI X, CHU J H, LI L X, et al. Development of room temperature CdZnTe nuclear radiation detector[J]. Semiconductor Technology, 2008, 33(11): 941-946 (in Chinese). | |
| [3] | RAHMAN R, PLATER A J, NOLAN P J, et al. Assessing CZT detector performance for environmental radioactivity investigations[J]. Radiation Protection Dosimetry, 2013, 154(4): 477-482. |
| [4] | GITS S, AUTHIER A. Plastic defects in α-HgI2 single crystals[J]. Journal of Crystal Growth, 1982, 58(3): 473-485. |
| [5] | MANFREDOTTI C, MURRI R, QUIRINI A, et al. PbI2 as nuclear particle detector[J]. IEEE Transactions on Nuclear Science, 1977, 24(1): 126-128. |
| [6] | ONODERA T, HITOMI K, SHOJI T. Spectroscopic performance and long-term stability of thallium bromide radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(1): 433-436. |
| [7] | CHU M R, TERTERIAN S, TING D, et al. Effects of p/n inhomogeneity on CdZnTe radiation detectors[C]//X-Ray and Gamma-Ray Detectors and Applications IV. Seattle, WA. SPIE, 2003: 237. |
| [8] | VERGER L, BONNEFOY J P, GLASSER F, et al. New developments in CdTe and CdZnTe detectors for X and γ-ray applications[J]. Journal of Electronic Materials, 1997, 26(6): 738-744. |
| [9] | LOCKER M, FISCHER P, KRIMMEL S, et al. Single photon counting X-ray imaging with Si and CdTe single chip pixel detectors and multichip pixel modules[J]. IEEE Transactions on Nuclear Science, 2004, 51(4): 1717-1723. |
| [10] | SONG Y L, LI L Q, HAO M W, et al. Elimination of interfacial-electrochemical-reaction-induced polarization in perovskite single crystals for ultrasensitive and stable X-ray detector arrays[J]. Advanced Materials, 2021, 33(52): 2103078. |
| [11] | SAKHATSKYI K, TUREDI B, MATT G J, et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity[J]. Nature Photonics, 2023, 17(6): 510-517. |
| [12] | SCHIEBER M, HERMON H, ZUCK A, et al. Theoretical and experimental sensitivity to X-rays of single and polycrystalline HgI2 compared with different single-crystal detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1/2): 41-46. |
| [13] | WEI H T, DESANTIS D, WEI W, et al. Dopant compensation in alloyed CH3NH3PbBr3- x Cl x perovskite single crystals for gamma-ray spectroscopy[J]. Nature Materials, 2017, 16(8): 826-833. |
| [14] | FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368. |
| [15] | PAN L, FENG Y X, KANDLAKUNTA P, et al. Performance of perovskite CsPbBr3 single crystal detector for gamma-ray detection[J]. IEEE Transactions on Nuclear Science, 2020, 67(2): 443-449. |
| [16] | HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9(1): 1609. |
| [17] | HE Y H, LIU Z F, MCCALL K M, et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922: 217-221. |
| [18] | HE Y H, PETRYK M, LIU Z F, et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays[J]. Nature Photonics, 2020, 15(1): 36-42. |
| [19] | ZHAO L, ZHOU Y, SHI Z F, et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy[J]. Nature Photonics, 2023, 17(4): 315-323. |
| [20] | JIN T, LIU Y T, XIONG Y, et al. Enhancing high-voltage stability of CsPbBr₃ radiation detectors through surface treatment and electrode replacement[J]. IEEE Electron Device Letters, 2023, 44(10): 1620-1623. |
| [21] | ZHAO L, SHI Z F, ZHOU Y, et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices[J]. Nature Photonics, 2024, 18(3): 250-257. |
| [22] | LIU X, XU M, HAO Y Y, et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15383-15390. |
| [23] | STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. |
| [24] | DIRIN D N, CHERNIUKH I, YAKUNIN S, et al. Solution-grown CsPbBr3 perovskite single crystals for photon detection[J]. Chemistry of Materials, 2016, 28(23): 8470-8474. |
| [25] | PAN W C, YANG B, NIU G D, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection[J]. Advanced Materials, 2019, 31(44): 1904405. |
| [26] | GOU Z Y, HUANGLONG S B, KE W J, et al. Self-powered X-ray detector based on all-inorganic perovskite thick film with high sensitivity under low dose rate[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(8): 1900094. |
| [27] | MATT G J, LEVCHUK I, KNÜTTEL J, et al. Sensitive direct converting X-ray detectors utilizing crystalline CsPbBr3 perovskite films fabricated via scalable melt processing[J]. Advanced Materials Interfaces, 2020, 7(4): 1901575. |
| [28] | DU X Y, LIU Y M, PAN W C, et al. Chemical potential diagram guided rational tuning of electrical properties: a case study of CsPbBr3 for X-ray detection[J]. Advanced Materials, 2022, 34(17): 2110252. |
| [29] | CHEN S X, LIU W W, XU M, et al. Electrospray prepared flexible CsPbBr3 perovskite film for efficient X-ray detection[J]. Journal of Materials Chemistry C, 2023, 11(25): 8431-8437. |
| [30] | LIU Y L, GAO C S, LI D, et al. Dynamic X-ray imaging with screen-printed perovskite CMOS array[J]. Nature Communications, 2024, 15(1): 1588. |
| [31] | XU Q, WANG X, ZHANG H, et al. CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application[J]. ACS Applied Electronic Materials, 2020, 2(4): 879-884. |
| [32] | ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256. |
| [33] | PENG J L, XIA C Q, XU Y L, et al. Crystallization of CsPbBr3 single crystals in water for X-ray detection[J]. Nature Communications, 2021, 12(1): 1531. |
| [34] | DI J Y, LI H J, SU J, et al. Reveal the humidity effect on the phase pure CsPbBr3 single crystals formation at room temperature and its application for ultrahigh sensitive X-ray detector[J]. Advanced Science, 2022, 9(2): 2103482. |
| [35] | HE Y H, HADAR I, DE SIENA M C, et al. Sensitivity and detection limit of spectroscopic-grade perovskite CsPbBr3 crystal for hard X-ray detection[J]. Advanced Functional Materials, 2022, 32(24): 2112925. |
| [36] | HUA Y Q, SUN X, LI X, et al. Anisotropic X-ray detection performance of melt-grown CsPbBr3 single crystals[J]. Journal of Materials Chemistry C, 2023, 11(27): 9153-9160. |
| [37] | PAN L, LIU Z F, WELTON C, et al. Ultrahigh-flux X-ray detection by a solution-grown perovskite CsPbBr3 single-crystal semiconductor detector[J]. Advanced Materials, 2023, 35(25): 2211840. |
| [38] | SHI R X, PI J C, CHU D P, et al. Promoting band splitting through symmetry breaking in inorganic halide perovskite single crystals for high-sensitivity X-ray detection[J]. ACS Energy Letters, 2023, 8(11): 4836-4847. |
| [39] | XUE Z X, WEI Y R, LI H, et al. Additive-enhanced crystallization of inorganic perovskite single crystals for high-sensitivity X-ray detection[J]. Small, 2023, 19(18): 2207588. |
| [40] | HUA Y Q, ZHANG G D, SUN X, et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals[J]. Nature Photonics, 2024, 18(8): 870-877. |
| [41] | ZHAO X, WANG S M, SONG Y N, et al. Freezing non-radiative recombination in high-performance CsPbBr3 single crystal X-ray detector[J]. Applied Physics Letters, 2024, 125(8): 083507. |
| [42] | PAN L, FENG Y X, HUANG J S, et al. Comparison of Zr, Bi, Ti, and Ga as metal contacts in inorganic perovskite CsPbBr₃ gamma-ray detector[J]. IEEE Transactions on Nuclear Science, 2020, 67(10): 2255-2262. |
| [43] | HAO Y Y, LI F P, BAI R C, et al. Investigation of LiF interlayer on charge collection efficiency and leakage current in CsPbBr3 radiation detector[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6837-6842. |
| [44] | PAN L, HE Y H, KLEPOV V V, et al. Perovskite CsPbBr3 single crystal detector for high flux X-ray photon counting[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3053-3061. |
| [45] | TOUFANIAN R, SWAIN S, BECLA P, et al. Cesium lead bromide semiconductor radiation detectors: crystal growth, detector performance and polarization[J]. Journal of Materials Chemistry C, 2022, 10(35): 12708-12714. |
| [46] | WANG F B, BAI R C, SUN Q H, et al. Precursor engineering for solution method-grown spectroscopy-grade CsPbBr3 crystals with high energy resolution[J]. Chemistry of Materials, 2022, 34(9): 3993-4000. |
| [47] | ZHANG M Z, YANG Y T, XIA G T, et al. Metal-semiconductor-metal-nanostructured CsPbBr3 crystal detector for long-term stable α-particle detection[J]. ACS Applied Nano Materials, 2022, 5(11): 16039-16044. |
| [48] | ZHANG X, LI F P, BAI R C, et al. Investigation on energy resolution of CsPbBr3 detectors: from charge transport behavior to device configuration[J]. Journal of Materials Chemistry C, 2022, 10(15): 6017-6024. |
| [49] | DE SIENA M C, KLEPOV V V, STEPANOFF S P, et al. Extreme γ-ray radiation tolerance of spectrometer-grade CsPbBr3 perovskite detectors[J]. Advanced Materials, 2023, 35(38): 2303244. |
| [50] | KLEPOV V V, DE SIENA M C, PANDEY I R, et al. Laser scribing for electrode patterning of perovskite spectrometer-grade CsPbBr3 gamma-ray detectors[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16895-16901. |
| [51] | PAN L, PANDEY I R, MICELI A, et al. Perovskite CsPbBr3 single-crystal detector operating at 1010 photons·s-1·mm-2 for ultra-high flux X-ray detection[J]. Advanced Optical Materials, 2023, 11(7): 2202946. |
| [52] | SUN Q H, GE B Z, XIAO B, et al. High-performance industrial-grade CsPbBr3 single crystal by solid-liquid interface engineering[J]. Advanced Science, 2023, 10(23): 2302236. |
| [53] | ZHANG X, LI F P, HAO Y Y, et al. Improved energy resolution by weighting potential optimization in CsPbBr3 pixelated gamma-ray detector[J]. IEEE Transactions on Electron Devices, 2023, 70(10): 5190-5195. |
| [54] | ZHANG M Z, HUANG C T, XIA G T, et al. Study on the vertical Bridgman method of melt-grown CsPbBr3 single crystals for nuclear radiation detection[J]. Acta Crystallographica Section B, 2024, 80(2): 64-71. |
| [55] | BAI R C, GE B Z, LIU X, et al. Kinetic modulation-eliminated precursor liquid inclusions in solution-grown CsPbBr3 bulk crystals for gamma-ray detection[J]. Journal of Materials Chemistry A, 2024, 12(23): 13925-13932. |
| [56] | CHUNG D Y, LIN W W, UNAL M, et al. Growth of high-purity CsPbBr3 crystals for enhanced gamma-ray detection[J]. Crystal Growth and Design, 2024, 24(22): 9590-9600. |
| [57] | HAO Y Y, BAI R C, ZHANG X, et al. Insight into the high-voltage stability of perovskite ionizing radiation detector: from interfacial reaction to performance degradation[J]. Applied Physics Letters, 2024, 125(10): 102106. |
| [58] | PAN L, BAYIKADI K S, PANDEY I R, et al. Ion migration enhances the performance of perovskite CsPbBr3 γ-ray detectors[J]. Advanced Materials Technologies, 2025, 10(6): 2401548. |
| [59] | ZHANG X, BAI R C, FU Y H, et al. High energy resolution CsPbBr3 alpha particle detector with a full-customized readout application specific integrated circuit[J]. Nature Communications, 2024, 15(1): 6333. |
| [60] | SHEN N N, GAO T T, OUYANG X, et al. Enhancing gamma-ray spectral resolution in perovskite CsPbBr3 detectors through dark current reduction with guard ring electrodes[J]. ACS Photonics, 2024, 11(9): 3662-3671. |
| [61] | GRUNDMANIS N, SARAKOVSKIS A, LUPILOV A, et al. The X- and gamma-ray detection properties of CsPbBr3 perovskite crystals grown by the Bridgman-Stockbarger method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 1073: 170305. |
| [62] | QIN H M, XIAO B, HE X C, et al. Virtual Frisch grid perovskite CsPbBr3 semiconductor with 2.2-centimeter thickness for high energy resolution gamma-ray spectrometer[J]. Nature Communications, 2025, 16(1): 158. |
| [63] | WANG F B, ZHANG H J, SUN Q H, et al. Low-temperature solution growth and characterization of halogen (Cl, I)-doped CsPbBr3 crystals[J]. Crystal Growth & Design, 2020, 20(3): 1638-1645. |
| [64] | ZHANG H J, LIU X, DONG J P, et al. Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method[J]. Crystal Growth & Design, 2017, 17(12): 6426-6431. |
| [65] | ZHANG P, ZHANG G D, LIU L, et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5040-5046. |
| [66] | ZHANG P, SUN Q H, XU Y D, et al. Enhancing carrier transport properties of melt-grown CsPbBr3 single crystals by eliminating inclusions[J]. Crystal Growth & Design, 2020, 20(4): 2424-2431. |
| [67] | YAFFE O, GUO Y S, TAN L Z, et al. Local polar fluctuations in lead halide perovskite crystals[J]. Physical Review Letters, 2017, 118(13): 136001. |
| [68] | PUPPIN M, POLISHCHUK S, COLONNA N, et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3 [J]. Physical Review Letters, 2020, 124(20): 206402. |
| [69] | KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3 [J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 489-493. |
| [70] | ZHANG M Z, ZHENG Z P, FU Q Y, et al. Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra[J]. The Journal of Physical Chemistry C, 2018, 122(19): 10309-10315. |
| [71] | ZHANG B-B, WANG F B, LIU X, et al. Ion migration controlled stability in α-particle response of CsPbBr2.4Cl0.6 detectors[J]. The Journal of Physical Chemistry C, 2021, 125(7): 4235-4242. |
| [72] | ZHANG B B, WANG F B, ZHANG H J, et al. Defect proliferation in CsPbBr3 crystal induced by ion migration[J]. Applied Physics Letters, 2020, 116(6): 063505. |
| [73] | LI F P, PENG W B, ZHANG X, et al. On the photoresponse regulations by deep-level traps in CsPbBr3 single crystal photodetectors[J]. Semiconductor Science Technology, 2023, 38(7): 075003. |
| [74] | ZHANG X L, WANG F B, ZHANG B B, et al. Ferroelastic domains in a CsPbBr3 single crystal and their phase transition characteristics: an in situ TEM study[J]. Crystal Growth & Design, 2020, 20(7): 4585-4592. |
| [75] | HIROTSU S, HARADA J, IIZUMI M, et al. Structural phase transitions in CsPbBr3 [J]. Journal of the Physical Society of Japan, 1974, 37(5): 1393-1398. |
| [76] | ZHANG X L, ZHAO D, LIU X, et al. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector[J]. The Journal of Physical Chemistry Letters, 2021, 12(35): 8685-8691. |
| [77] | CHENG Y B, SUN Q H, ZHANG P, et al. Secondary phase particles in cesium lead bromide perovskite crystals: an insight into the formation of matrix-controlled inclusion[J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5625-5631. |
| [78] | CHENG Y B, ZHU M H, WANG F B, et al. Precursor solution-dependent secondary phase defects in CsPbBr3 single crystal grown by inverse temperature crystallization[J]. Journal of Materials Chemistry A, 2021, 9(48): 27718-27726. |
| [1] | 开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. |
| [2] | 李宝珠;高彦昭;王健;程红娟;陈毅;姚宝权. 高质量CdSe单晶生长及其OPO性能研究[J]. 人工晶体学报, 2020, 49(8): 1517-1522. |
| [3] | 文思逸;邹苑庄;胡飞;文圆. Cl掺杂对氧化亚铜薄膜载流子浓度及寿命的影响[J]. 人工晶体学报, 2015, 44(11): 3361-3364. |
| [4] | 施凌云;张继军;王林军;黄健;唐可;彭兰. 垂直Bridgman法生长Cd1-XMnxTe晶体的缺陷研究[J]. 人工晶体学报, 2011, 40(3): 543-547. |
| [5] | 高磊;董春明;胡小波;王继场. 高分辨X射线衍射术对NdP5O14晶体的自发应变及铁弹畴结构的研究[J]. 人工晶体学报, 2002, 31(1): 41-44. |
| [6] | 袁清习;赵春华;殷晓峰;罗卫平;徐军;潘守夔. β′-钼酸钆晶体的生长与畴结构观察[J]. 人工晶体学报, 2001, 30(3): 273-279. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS