欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1146-1159.DOI: 10.16553/j.cnki.issn1000-985x.2025.0056

• 综合评述 • 上一篇    下一篇

辐射探测器用CsPbBr3晶体的缺陷研究进展

李宁1(), 张欣雷2, 肖宝3(), 张滨滨1()   

  1. 1.国防科技大学前沿交叉学科学院&南湖之光实验室,长沙 410073
    2.陕西师范大学物理学与信息技术学院,西安 710119
    3.苏州大学,放射医学及交叉学科研究院,放射医学与辐射防护国家重点实验室,苏州 215123
  • 收稿日期:2025-03-21 出版日期:2025-07-20 发布日期:2025-07-30
  • 通信作者: 肖宝,博士,助理研究员。E-mail:fsnhxiaobao@163.com;张滨滨,博士,副研究员。E-mail:zbb@nwpu.edu.cn
  • 作者简介:李宁(1997—),男,内蒙古自治区人,博士研究生。E-mail:lining23@nudt.edu.cn
    肖 宝,苏州大学放射医学与防护学院助理研究员。本科、硕士及博士阶段均就读于西北工业大学材料学院,博士期间师从介万奇教授。近年来主要从事新型室温辐射半导体材料与器件研究,累计发表学术论文30余篇,申请发明专利7项。
    张滨滨,国防科技大学前沿交叉学科学院副研究员。2016年在南京大学获得工学博士学位。先后在西北工业大学、英国萨里大学、上海科技大学、国防科技大学从事科研工作,长期从事功能晶体材料的设计及核辐射探测器等领域的研究。主持科研项目5项,参与各类国家级项目10余项。以第一/通信作者身份在Phys Rev LettAdv Fuct MaterJ Phys Chem Lett等期刊上发表论文40余篇,被引用3000余次。申请中国发明专利10余项,其中授权7项。曾获陕西省技术发明一等奖1项,陕西省自然科学一等奖1项,中国材料协会科学技术奖基础研究奖二等奖1项。

Research Progress on Defects in CsPbBr3 Crystals for Radiation Detectors

LI Ning1(), ZHANG Xinlei2, XIAO Bao3(), ZHANG Binbin1()   

  1. 1.College of Advanced Interdisciplinary Studies & Nanhu Laser Laboratory,National University of Defense Technology,Changsha 410073,China
    2.School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China
    3.State Key Laboratory of Radiation Medicineand Protection,School for Radiological and Interdisciplinary Sciences (RAD-X),Soochow University,Suzhou 215123,China
  • Received:2025-03-21 Online:2025-07-20 Published:2025-07-30

摘要: CsPbBr3晶体因高原子序数、优异的载流子输运性能及室温工作特性,成为新一代半导体辐射探测器的核心候选材料。然而,晶体中的缺陷(如点缺陷、孪晶、夹杂相)会显著影响其性能。本综述系统分析了CsPbBr3中缺陷的形成机制及其对载流子传输的制约:晶格极化子效应主导本征散射,点缺陷(如Pb间隙原子)通过深能级陷阱加剧载流子复合;铁弹畴(孪晶)因界面势垒导致载流子局域化;夹杂相(如CsPb2Br5)通过光散射和非共格界面降低迁移率与电阻率。研究揭示了熔融法与溶液法生长动力学对缺陷分布的差异,并提出了化学计量调控、溶剂工程及退火工艺等优化策略。尽管CsPbBr3在X/γ射线探测中展现出接近商用CZT的能谱分辨率(如1.4%@662 keV),但缺陷动态演化与离子迁移仍限制了其稳定性。未来需聚焦极化子-缺陷协同机制的分析、精准缺陷调控技术的开发及新型器件结构设计,以推动其在核医学成像、深空探测等领域的实际应用。

关键词: CsPbBr3晶体; 缺陷调控; 载流子寿命; 极化子; 铁弹畴; 夹杂相

Abstract: CsPbBr3 crystal has emerged as a promising candidate material for next-generation semiconductor radiation detectors due to its high atomic number, excellent charge transport properties, and room-temperature operability. However, defects in the crystal (point defects, twins, and secondary phases) significantly degrade its performance. This review systematically analyzes the formation mechanisms of defects in CsPbBr3 and their impact on carrier transport, lattice polaron effects dominate intrinsic scattering while point defects (e.g., Pb interstitials) introduce deep-level traps that enhance carrier recombination, ferroelastic domains (twins) induce carrier localization through interfacial potential barriers, and secondary phases (e.g., CsPb2Br5) reduce mobility and resistivity via light scattering and incoherent interfaces. The study highlights differences in defect distribution between melt- and solution-grown crystals and proposes optimization strategies such as stoichiometric control, solvent engineering, and annealing. Although CsPbBr3 demonstrates X/γ-ray energy resolution comparable to commercial CdZnTe (e.g., 1.4%@662 keV), defect dynamics and ion migration hinder stability. Future research should focus on elucidating polaron-defect interactions, developing defect suppression techniques, and designing novel device architectures to advance its applications in nuclear medicine imaging and deep-space exploration.

Key words: CsPbBr3 crystal; defect engineering; carrier lifetime; polaron; ferroelastic domain; secondary phase

中图分类号: