
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1823-1835.DOI: 10.16553/j.cnki.issn1000-985x.2025.0166
董浩茗1,2,3(
), 付威伶2, 程曦月2,3, 邓水全2,3(
)
收稿日期:2025-07-29
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
邓水全,博士,研究员。E-mail:sdeng@fjirsm.ac.cn
作者简介:董浩茗(2001—),男,浙江省人,硕士研究生。E-mail:donghaoming@fjirsm.ac.cn基金资助:
DONG Haoming1,2,3(
), FU Weiling2, CHENG Xiyue2,3, DENG Shuiquan2,3(
)
Received:2025-07-29
Online:2025-10-20
Published:2025-11-11
摘要: 本研究系统探讨了磷酸二氢钾(KDP)晶体激光诱导体损伤与其四方-单斜相变之间的关联。基于热-力耦合模拟,定量分析了激光辐照下晶体的温度场与应力场分布特征。结果表明,激光辐照中心区域的峰值温度显著超过材料的相变临界温度,但激光诱导的热应力尚未达到引发塑性变形或结构损伤的临界阈值。通过相场模拟发现,四方-单斜相变过程中在相界处会产生显著的应力集中现象,其应力值超过KDP晶体的屈服强度,导致塑性变形发生。值得注意的是,模拟得到的高应力区分布与实验中观测到的特征性十字形损伤裂纹形貌高度吻合。进一步研究表明,随着温度持续升高或位移约束减弱,相变应力可超过材料的屈服强度甚至断裂极限,从而直接诱发裂纹萌生。本研究证实,四方-单斜相变导致的高应力是形成KDP晶体特征性十字形损伤的关键因素,为深入理解其激光损伤机制提供了新的理论依据。
中图分类号:
董浩茗, 付威伶, 程曦月, 邓水全. 激光辐照过程KDP晶体相变与应力演化模拟:损伤机理分析[J]. 人工晶体学报, 2025, 54(10): 1823-1835.
DONG Haoming, FU Weiling, CHENG Xiyue, DENG Shuiquan. Simulation of Phase Transition and Stress Evolution in Laser-Irradiated KDP Crystals: Analysis of Damage Mechanisms[J]. Journal of Synthetic Crystals, 2025, 54(10): 1823-1835.
| Material | Thermal expansion, αexp/(1×10-5 K-1)[ | Thermal expansion, αcal/(1×10-5 K-1) |
|---|---|---|
| KDP crystal(Tetragonal) | 2.61(⊥c), 4.46(∥c) | 4.25 |
| KDP crystal(Monoclinic) | 3.01 |
表1 KDP 晶体四方相与单斜相热膨胀系数的实验与计算结果
Table 1 Experimental and calculated results of thermal expansion coefficients for tetragonal and monoclinic phases of KDP crystal
| Material | Thermal expansion, αexp/(1×10-5 K-1)[ | Thermal expansion, αcal/(1×10-5 K-1) |
|---|---|---|
| KDP crystal(Tetragonal) | 2.61(⊥c), 4.46(∥c) | 4.25 |
| KDP crystal(Monoclinic) | 3.01 |
| Material | Density, | Specific heat, | Thermal conductivity, |
|---|---|---|---|
| KDP Crystal | 2338.0 | 857.0 | 1.34(⊥c), 1.21(∥c) |
表2 KDP晶体的热力学性质[41?42]
Table 2 Thermodynamic properties of KDP crystal[41?42]
| Material | Density, | Specific heat, | Thermal conductivity, |
|---|---|---|---|
| KDP Crystal | 2338.0 | 857.0 | 1.34(⊥c), 1.21(∥c) |
| Parameter | Value |
|---|---|
| Incident laser power, Pin/W | 1.4 |
| Fractional thermal load, | 0.3 |
| Waist radius of laser beam, | 75.0 |
| Focal plane position of the laser beam, z0 /mm | 0.255 |
| Far-field half-angle of the laser beam, | 0.5 |
| Absorption coefficient of KDP crystal, | 3( |
表3 热-力耦合模拟中的激光参数
Table 3 Laser parameters in thermo-mechanical coupling simulation
| Parameter | Value |
|---|---|
| Incident laser power, Pin/W | 1.4 |
| Fractional thermal load, | 0.3 |
| Waist radius of laser beam, | 75.0 |
| Focal plane position of the laser beam, z0 /mm | 0.255 |
| Far-field half-angle of the laser beam, | 0.5 |
| Absorption coefficient of KDP crystal, | 3( |
| Material | Elastic stiffness tensor (tetragonal phase, Voigt notation), | |||||
|---|---|---|---|---|---|---|
| KDP crystal | ||||||
| 76.50 | -6.27 | 14.94 | 56.40 | 12.48 | 6.21 | |
表4 KDP晶体的弹性刚度矩阵参数[49]
Table 4 Elastic stiffness matrix parameters of KDP crystal[49]
| Material | Elastic stiffness tensor (tetragonal phase, Voigt notation), | |||||
|---|---|---|---|---|---|---|
| KDP crystal | ||||||
| 76.50 | -6.27 | 14.94 | 56.40 | 12.48 | 6.21 | |
图2 四方-单斜相变相场模拟的几何构型示意图。(a)晶格变形模式示意图(γ角由90°变化至120°);(b)二维计算模型;(c)三维计算模型
Fig.2 Schematic illustrations of geometric configurations for tetragonal-monoclinic phase-field simulation. (a) Lattice deformation pattern (γ angle varying from 90° to 120°); (b) 2D computational model; (c) 3D computational model
图3 相变模拟验证结果。(a)~(c)四方-单斜相分布随时间演化(16、24、28 ns);80 ns时刻四方相与单斜相的三维空间分布图(d)和二维投影图(e)
Fig.3 Validation results of phase transition simulation. (a)~(c) Temporal evolution of tetragonal-monoclinic phase transition process (16, 24, 28 ns); 3D spatial distribution diagram (d) and 2D projection diagram (e) of tetragonal and monoclinic phases at 80 ns
图4 无杂质条件下KDP晶体的温度(a)及应力场(b)分布;Al杂质存在时KDP晶体的温度(c)及应力场(d)分布
Fig.4 Temperature (a) and stress field (b) distributions in pure KDP crystal; temperature (c) and stress field (d) distributions in Al-doped KDP crystal
图5 全位移约束条件下461 K时KDP晶体的相变与应力分布。(a)~(c)四方-单斜相分布随时间演化(0、100、200 ns);(d)~(f)von Mises等效应力随时间变化(0、100、200 ns)
Fig.5 Phase transition and stress distribution in KDP crystal at 461 K under fully constrained displacement. (a)~(c) Temporal evolution of tetragonal-monoclinic phase distribution (0, 100, and 200 ns); (d)~(f) temporal variation of von Mises equivalent stress (0, 100, and 200 ns)
图6 不同边界条件与温度组合下的von Mises等效应力分布。(a)461 K全约束边界200 ns结果;(b)468 K全约束边界148 ns结果;(c)461 K无约束边界86 ns结果
Fig.6 von Mises stress distributions under varying boundary and temperature conditions. (a) Fully constrained at 461 K (200 ns); (b) fully constrained at 468 K (148 ns); (c) unconstrained at 461 K (86 ns)
图7 第一主应力分布及应力分量演化。(a)461 K无约束条件下96 ns时的第一主应力分布;(b)487 K全约束条件下96 ns时的第一主应力分布;(c)487 K全约束条件下应力张量各分量最大值随时间演化
Fig.7 Distributions of first principal stress and evolution of stress components. (a) First principal stress at 96 ns (461 K, unconstrained); (b) first principal stress at 96 ns (487 K, fully constrained); (c) time evolution of maximum stress tensor components (487 K, fully constrained)
| [1] | WOOD R M. Laser-induced damage of optical materials[M]. Boca Raton: CRC Press, 2003. |
| [2] | CARR C W, RADOUSKY H B, RUBENCHIK A M, et al. Localized dynamics during laser-induced damage in optical materials[J]. Physical Review Letters, 2004, 92(8): 087401. |
| [3] | International Organization for Standardization. ISO 21254-1(2011). Lasers and laser-related equipment—Test methods forlaser-induced damage threshold—Part1: Definitions and general principles[S]. Europe: IHS Global Insight, 2011. |
| [4] |
HOPPER R W, UHLMANN D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037.
DOI URL |
| [5] | FEIT M D, RUBENCHIK A M. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning[C]// Laser-Induced Damage in Optical Materials: 2003. Boulder, CO. SPIE, 2004: 74. |
| [6] |
CARR C W, RADOUSKY H B, DEMOS S G. Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms[J]. Physical Review Letters, 2003, 91(12): 127402.
DOI URL |
| [7] | CHENG J, CHEN M J, KAFKA K, et al. Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: numerical calculation and experimental verification[J]. AIP Advances, 2016, 6(3): 035221. |
| [8] |
GARCES N Y, STEVENS K T, HALLIBURTON L E, et al. Identification of electron and hole traps in KH2PO4 crystals[J]. Journal of Applied Physics, 2001, 89(1): 47-52.
DOI URL |
| [9] |
DEMOS S G, DEMANGE P, NEGRES R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804.
DOI PMID |
| [10] |
POMMIÈS M, DAMIANI D, LE BORGNE X, et al. Impurities detection by optical techniques in KH2PO4 crystals[J]. Optics Communications, 2007, 275(2): 372-378.
DOI URL |
| [11] | RUNKEL M J, YAN M, DEYOREO J J, et al. Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals[C]// Laser-Induced Damage in Optical Materials: 1997. Boulder, CO. SPIE, 1998: 211. |
| [12] | BAI J Y, XU M X, LIU H J, et al. The characteristics of “hair” inclusions in large aperture KDP/DKDP crystals and their impact on laser damage[J]. Optics & Laser Technology, 2025, 181: 111889. |
| [13] |
LI Y, HAO G K, BAI J Y, et al. Structural and electronic properties and optical absorption of oxygen vacancy cluster defects in KDP crystals: hybrid density functional theory investigation[J]. CrystEngComm, 2023, 25(19): 2959-2965.
DOI URL |
| [14] |
YOSHIDA H, JITSUNO T, FUJITA H, et al. Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, and wavelength[J]. Applied Physics B, 2000, 70(2): 195-201.
DOI URL |
| [15] |
HUANG J, WU Z Q, WANG F R, et al. Initial damage and damage growth of KDP crystals induced by 355 nm pulse laser[J]. Crystal Research and Technology, 2018, 53(3): 1700269.
DOI URL |
| [16] |
YUAN H, LI Y X, DAN Z Q, et al. Investigation and analysis of pin-point damage and damage growth characteristics in KDP and DKDP crystals[J]. Optics Express, 2023, 31(22): 35786-35797.
DOI PMID |
| [17] | TIAN Y, HAN W, CAO H B, et al. Characteristics of laser-induced surface damage on large-aperture KDP crystals at 351 nm[J]. Chinese Physics Letters, 2015, 32(2): 027801. |
| [18] | HAN W, ZHOU L D, XIANG Y, et al. Characteristics of laser-induced surface and bulk damage of large-aperture deuterated potassium dihydrogen phosphate at 351 nm[J]. Chinese Physics Letters, 2016, 33(2): 027803. |
| [19] |
DING W Y, CHENG J, ZHAO L J, et al. Determination of intrinsic defects of functional KDP crystals with flawed surfaces and their effect on the optical properties[J]. Nanoscale, 2022, 14(28): 10041-10050.
DOI PMID |
| [20] |
ZHU C Y, LI Y X, YUAN H, et al. Evolution of laser-induced bulk damage in KDP crystal[J]. Optics Express, 2022, 30(2): 1327-1336.
DOI PMID |
| [21] | KRUPYCH O, DYACHOK Y, SMAGA I, et al. Morphology of laser-induced damage of lithium niobate and KDP crystals[J]. Optica Applicata, 2008, 38: 567-574. |
| [22] |
YANG H, CHENG J, LIU Z C, et al. Dynamic behavior modeling of laser-induced damage initiated by surface defects on KDP crystals under nanosecond laser irradiation[J]. Scientific Reports, 2020, 10(1): 500.
DOI PMID |
| [23] |
SUBRAMONY J A, LOVELL S, KAHR B. Polymorphism of potassium dihydrogen phosphate[J]. Chemistry of Materials, 1998, 10(8): 2053-2057.
DOI URL |
| [24] |
ITOH K, MATSUBAYASHI T, NAKAMURA E, et al. X-ray study of high-temperature phase transitions in KH2PO4 [J]. Journal of the Physical Society of Japan, 1975, 39(3): 843-844.
DOI URL |
| [25] |
SERRA K C, MELO F E A, FILHO J M, et al. Raman study of the tetragonal → monoclinic phase transition in KDP[J]. Solid State Communications, 1988, 66(6): 575-579.
DOI URL |
| [26] |
BOTEZ C E, CARBAJAL D, ADIRAJU V A K, et al. Intermediate-temperature polymorphic phase transition in KH2PO4: a synchrotron X-ray diffraction study[J]. Journal of Physics and Chemistry of Solids, 2010, 71(11): 1576-1580.
DOI URL |
| [27] |
ORTIZ E, VARGAS A, MELLANDER B E. On the reported high-temperature phase transition in KH2PO4: strong evidence of partial polymerization instead of a structural phase transition[J]. Journal of Physics and Chemistry of Solids, 1998, 59(3): 305-310.
DOI URL |
| [28] |
LEE K S. Surface transformation of hydrogen-bonded crystals at high-temperatures and topochemical nature[J]. Ferroelectrics, 2002, 268(1): 369-374.
DOI URL |
| [29] |
CHEN L Q, MOELANS N. Phase-field method of materials microstructures and properties[J]. MRS Bulletin, 2024, 49(6): 551-555.
DOI |
| [30] |
ZHANG A, GUO Z P, JIANG B, et al. Numerical solution to phase-field model of solidification: a review[J]. Computational Materials Science, 2023, 228: 112366.
DOI URL |
| [31] |
YAMANAKA A. Phase-field modeling and simulation of solid-state phase transformations in steels[J]. ISIJ International, 2023, 63(3): 395-406.
DOI URL |
| [32] |
BERNACKI M. Kinetic equations and level-set approach for simulating solid-state microstructure evolutions at the mesoscopic scale: state of the art, limitations, and prospects[J]. Progress in Materials Science, 2024, 142: 101224.
DOI URL |
| [33] |
MAMIVAND M, ASLE ZAEEM M, KADIRI HEL, et al. Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia[J]. Acta Materialia, 2013, 61(14): 5223-5235.
DOI URL |
| [34] |
ZHAO J J, LI J J, HU X B, et al. Establishing reduced-order process-structure linkages from phase field simulations of dendritic grain growth during solidification[J]. Computational Materials Science, 2022, 214: 111694.
DOI URL |
| [35] |
CAHN J W, HILLIARD J E. Free energy of a nonuniform system. I. interfacial free energy[J]. The Journal of Chemical Physics, 1958, 28(2): 258-267.
DOI URL |
| [36] |
ALLEN S M, CAHN J W. Ground state structures in ordered binary alloys with second neighbor interactions[J]. Acta Metallurgica, 1972, 20(3): 423-433.
DOI URL |
| [37] |
ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27(6): 1085-1095.
DOI URL |
| [38] |
DE YOREO J J, BURNHAM A K, WHITMAN P K. Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152.
DOI URL |
| [39] | 刘 琳. 大尺寸KDP/DKDP晶体热学性质及其均匀性研究[D]. 济南: 山东大学, 2015. |
| LIU L. Study on the thermal property and uniformity of large KDP/DKDP crystals[D]. Jinan: Shandong University, 2015 (in Chinese). | |
| [40] |
ZHANG X D, YING C H, QUAN S Y, et al. Ab initio study of the structural, phonon, elastic and thermodynamic properties of the ordered Ge0.5Sn0.5 cubic alloy under high pressure[J]. Computational Materials Science, 2012, 58: 12-16.
DOI URL |
| [41] |
HU Z T, LAN M, HUANG D, et al. Stress analysis of KDP single crystals caused by thermal expansion mismatch during traditional growth[J]. Crystals, 2022, 12(9): 1323.
DOI URL |
| [42] | NIKOGOSYAN D N. Nonlinear optical crystals: a complete survey[M]. New York: Springer-Science, 2005. |
| [43] |
CHEN Y F, LIAO T S, KAO C F, et al. Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-beam quality[J]. IEEE Journal of Quantum Electronics, 1996, 32(11): 2010-2016.
DOI URL |
| [44] | FU W L, QI D W, ZHONG T T, et al. The temperature profile within Er3+∶Yb3+∶LuAl3(BO3)4 crystal: insights uncovered by a combined theoretical and experimental study[J]. Optics & Laser Technology, 2024, 176: 110896. |
| [45] | YU J, MENG H X, JIN T F. Modeling of thermal lensing in CW end-pumped solid state lasers[C]// High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers. Beijing, China. SPIE, 1996: 171-177. |
| [46] |
FAN T Y. Heat generation in Nd∶YAG and Yb∶YAG[J]. IEEE Journal of Quantum Electronics, 1993, 29(6): 1457-1459.
DOI URL |
| [47] |
FAN T Y, SANCHEZ A. Pump source requirements for end-pumped lasers[J]. IEEE Journal of Quantum Electronics, 1990, 26(2): 311-316.
DOI URL |
| [48] | SOROKIN B P, TELICHKO A V. Temperature coefficients of elastic constants of trigonal, hexagonal, and tetragonal crystals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(2): 311-314. |
| [49] |
FANG T, LAMBROPOULOS J C. Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP)[J]. Journal of the American Ceramic Society, 2002, 85(1): 174-178.
DOI URL |
| [50] |
YILBAS B S, ARIF A F M. Material response to thermal loading due to short pulse laser heating[J]. International Journal of Heat and Mass Transfer, 2001, 44(20): 3787-3798.
DOI URL |
| [51] |
CHEN L Q. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113-140.
DOI URL |
| [52] |
LEVITAS V I, PRESTON D L. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis[J]. Physical Review B, 2002, 66(13): 134207.
DOI URL |
| [53] |
LEVITAS V I, ROY A M. Multiphase phase field theory for temperature-induced phase transformations: formulation and application to interfacial phases[J]. Acta Materialia, 2016, 105: 244-257.
DOI URL |
| [54] |
LEVITAS V I, PRESTON D L. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis[J]. Physical Review B, 2002, 66(13): 134207.
DOI URL |
| [55] |
BLOEMBERGEN N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4): 661-664.
DOI URL |
| [56] |
CHOI B K. High temperature phase transitions and thermal decomposition of KH2PO4 crystals[J]. Journal of Physics and Chemistry of Solids, 1995, 56(8): 1023-1030.
DOI URL |
| [57] |
SINGER-LOGINOVA I, SINGER H M. The phase field technique for modeling multiphase materials[J]. Reports on Progress in Physics, 2008, 71(10): 106501.
DOI URL |
| [58] |
LEVITAS V I, MOMENI K. Solid-solid transformations via nanoscale intermediate interfacial phase: multiple structures, scale and mechanics effects[J]. Acta Materialia, 2014, 65: 125-132.
DOI URL |
| [59] | COMSOL Multiphysics®v. 6.3. www.comsol.com. COMSOL AB, Stockholm, Sweden. |
| [60] | RASHKOVICH L N. KDP - family single crystals[M]. Boca Raton: CRC Press, 2021. |
| [61] |
CHEN M J, WANG J H, CHEN X M, et al. Analysis of mechanical property of crystal KDP and simulation of ultra-precision cutting process in the ductile mode[J]. Key Engineering Materials, 2007, 329: 427-432.
DOI URL |
| [62] | HU G, QI H, HE H, et al. 3D morphology of laser-induced bulk damage at 355 and 1064 nm in KDP crystal with different orientations [M]. SPIE, 2010. |
| [63] |
ZHANG Y, HOU N, ZHANG L C, et al. Elastic-plastic-brittle transitions of potassium dihydrogen phosphate crystals: characterization by nanoindentation[J]. Advances in Manufacturing, 2020, 8(4): 447-456.
DOI |
| [1] | 韩笋, 李艳. VO2-SiO2复合薄膜的激光诱导损伤特性研究[J]. 人工晶体学报, 2024, 53(10): 1738-1744. |
| [2] | 刘发付, 牟晓明, 郭建斌, 郭在在, 曹剑武, 徐明霞. 大尺寸70%DKDP晶体残余应力应变研究[J]. 人工晶体学报, 2023, 52(7): 1357-1363. |
| [3] | 熊光辉, 李军, 李凯旋, 吴成, 于宁斌, 高秀娟. 基于摩擦磨损的KDP晶体固结磨料抛光垫优化[J]. 人工晶体学报, 2022, 51(2): 271-281. |
| [4] | 胡子钰, 张敏, 林秀钦, 祁英昆, 卢俊业, 李静雯, 郑国宗. 点籽晶定向生长70%DKDP晶体的研究[J]. 人工晶体学报, 2020, 49(10): 1776-1781. |
| [5] | 蔡序敏, 祁英昆, 赵元安, 胡国行, 李国辉, 胡子钰, 郑国宗. 横向双锥快速生长35%DKDP晶体的研究[J]. 人工晶体学报, 2019, 48(4): 587-591. |
| [6] | 司玉玺;李刚;周广刚;毛彩菊;卢贵武;刘坚. 有机物掺杂下KDP晶体的光学与热学性质研究[J]. 人工晶体学报, 2019, 48(11): 2014-2017. |
| [7] | 周鑫华;邱贝贝;李刚;周广刚;卢贵武. L-丝氨酸掺杂KDP晶体的生长与表征[J]. 人工晶体学报, 2019, 48(10): 1863-1868. |
| [8] | 曹巧双;余德平;徐继业;张敏;黄玮海. KDP晶体脆塑转变切削过程有限元仿真与实验研究[J]. 人工晶体学报, 2018, 47(8): 1512-1516. |
| [9] | 文继斌;耿锋;黄进;王凤蕊;刘红婕;曹林洪. 不同波长条件KDP晶体的非线性光学性质研究[J]. 人工晶体学报, 2018, 47(2): 359-364. |
| [10] | 杜晓文;韩雪松;郭海涛. KDP晶体单点金刚石飞切过程裂纹扩展影响因素研究[J]. 人工晶体学报, 2018, 47(1): 18-24. |
| [11] | 杨萍;张晨贵;梁莹林;刘有海;阳红;张连新;栾春红;姜晶;王超. SPDT加工对KDP晶体表面温度及应力的影响[J]. 人工晶体学报, 2016, 45(4): 896-900. |
| [12] | 汪圣飞;安晨辉;张飞虎;王健;雷向阳;张剑锋. 基于纳米划痕实验和有限元仿真的KDP晶体断裂性能研究[J]. 人工晶体学报, 2015, 44(9): 2325-2329. |
| [13] | 滕晓辑;高航;王旭;陈玉川. KDP晶体水溶解辅助金刚石线锯精密切割试验研究[J]. 人工晶体学报, 2015, 44(6): 1438-1442. |
| [14] | 刘琳;王圣来;刘光霞;王端良;李伟东;丁建旭. 大尺寸KDP/DKDP晶体热膨胀系数研究[J]. 人工晶体学报, 2015, 44(6): 1443-1447. |
| [15] | 崔启栋;李明伟;尹华伟. KDP晶体“二维平动法”生长及其品质分析[J]. 人工晶体学报, 2015, 44(6): 1454-1459. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS