[1] 张钰海, 张 根, 李静静, 等. 基于大科学装置的放射性新核素产生进展[J]. 同位素, 2022, 35(2): 104-113. ZHANG Y H, ZHANG G, LI J J, et al. Progress in the production of new radioactive nuclides based on large-scale scientific facilities[J]. Journal of Isotopes, 2022, 35(2): 104-113 (in Chinese). [2] YOKOYAMA R, SINGH M, GRZYWACZ R, et al., Segmented YSO scintillation detectors as a new β-implant detection tool for decay spectroscopy in fragmentation facilities[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 937: 93-97. [3] 祁 中, 郭忠言, 詹文龙, 等. 用于中能重离子反应测量的塑料闪烁探测器阵列[J]. 高能物理与核物理, 1997, 21(7): 577-582. QI Z, GUO Z Y, ZHAN W L, et al. Plastic scintillation detector array for medium energy heavy ion reaction measurement[J]. Chinese Physics C, 1997, 21(7): 577-582 (in Chinese). [4] 黄 秋, 方 方, 丁卫撑, 等. 大面积塑料闪烁探测器剂量线性测量及修正[J]. 中国测试, 2015, 41(6): 30-33. HUANG Q, FANG F, DING W C, et al. Measurement and correction of large-area plastic scintillation detector dose linearity[J]. China Measurement & Test, 2015, 41(6): 30-33 (in Chinese). [5] 王 强, 王 璐, 屈菁菁, 等. 基于单光子技术的闪烁体衰减时间常数测量[J]. 压电与声光, 2020, 42(2): 200-202. WANG Q, WANG L, QU J J, et al. Measurement of scintillator decay time constant based on single photon technology[J]. Piezoelectrics & Acoustooptics, 2020, 42(2): 200-202 (in Chinese). [6] LI Y Y, LI C Y, HU K. Design and development of multi-channel front end electronics based on dual-polarity charge-to-digital converter for SiPM detector applications[J]. Nuclear Science and Techniques, 2023, 34(2): 18. [7] SIEGEL S, SILVERMAN R W, SHAO Y P, et al. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT[J]. IEEE Transactions on Nuclear Science, 1996, 43(3): 1634-1641. [8] 刘 毅. 康普顿散射成像探测器的研制[D]. 成都: 成都理工大学, 2018. LIU Y. Development of Compton scattering imaging detector[D]. Chengdu: Chengdu University of Technology, 2018 (in Chinese). [9] 李英帼, 黄 川, 王天泉, 等. PET探测器波形积分法位置分辨性能测量[J]. 核电子学与探测技术, 2020, 40(2): 346-352. LI Y G, HUANG C, WANG T Q, et al. Waveform integration method for measuring position resolution of PET detectors[J]. Nuclear Electronics & Detection Technology, 2020, 40(2): 346-352 (in Chinese). [10] POPOV V, MAJEWSKI S, WEISENBERGER A G, et al. Analog readout system with charge division type output[C]//2001 IEEE Nuclear Science Symposium Conference Record. November 4-10, 2001, San Diego, CA, USA. IEEE, 2001: 1937-1940. [11] POPOV V, MAJEWSKI S, WEISENBERGER A G. Readout electronics for multianode photomultiplier tubes with pad matrix anode layout[C]. IEEE Nuclear Science Symposium. Conference Record. October 19-25, 2003, Portland, OR, USA. IEEE, 2003: 2156-2159. [12] 征云飞, 李兰君, 邝忠华, 等. 光导厚度对基于高分辨率LYSO和SiPM阵列PET探测器性能的影响[J]. 核技术, 2018, 41(4): 44-50. ZHENG Y F, LI L J, KUANG Z H, et al. Effects of light guide thickness on the performance of PET detectors consisting of high-resolution LYSO and SiPM array[J]. Nuclear Techniques, 2018, 41(4): 44-50 (in Chinese). [13] 李 岩, 王 强, 黄先超, 等. 大面积高灵敏度编码相机探测器的设计与性能测试[J]. 核技术, 2020, 43(5): 33-38. LI Y, WANG Q, HUANG X C, et al. Detector design and performance test for coded camera of large area and high sensitivity[J]. Nuclear Techniques, 2020, 43(5): 33-38 (in Chinese). [14] 蔡小杰, 黄 畅, 唐 彬, 等. Anger-camera型中子探测器位置分辨性能研究[J]. 核科学与工程, 2024, 44(1): 233-242. CAI X J, HUANG C, TANG B, et al. Study on position resolution of neutron detector based on anger-camera[J]. Nuclear Science and Engineering, 2024, 44(1): 233-242 (in Chinese). [15] LIU Z, NIU M, KUANG Z H, et al. High resolution detectors for whole-body PET scanners by using dual-ended readout[J]. EJNMMI Physics, 2022, 9(1): 29. [16] 佟林格. 高分辨率小动物PET成像系统探测器性能测试与初步断层成像研究[D]. 兰州: 兰州大学, 2018. TONG L G. Performance test and preliminary tomography study of detector in high resolution PET imaging system for small animals[D]. Lanzhou: Lanzhou University, 2018 (in Chinese). [17] 尹 红, 徐 扬, 李德辉, 等. 小动物PET成像用LYSO闪烁晶体阵列研究[J]. 压电与声光, 2014, 36(3): 406-408+411. YIN H, XU Y, LI D H, et al. Study on LYSO scintillation crystal array for small animal PET applications[J]. Piezoelectrics & Acoustooptics, 2014, 36(3): 406-408+411 (in Chinese). |