JOURNAL OF SYNTHETIC CRYSTALS ›› 2025, Vol. 54 ›› Issue (1): 85-94.DOI: 10.16553/j.cnki.issn1000-985x.2024.0190
• Research Articles • Previous Articles Next Articles
WANG Yunjie1,2, HE Zhihao1,2, DING Jiafu1,2, SU Xin1,2
Received:
2024-09-01
Online:
2025-01-15
Published:
2025-01-22
[1] GRAHAM T R, NIENHUIS E T, REYNOLDS J G, et al. Sodium site occupancy and phosphate speciation in natrophosphate are invariant to changes in NaF and Na3PO4 concentration[J]. Inorganic Chemistry Frontiers, 2022, 9(19): 4864-4875. [2] ZHANG L X, LIU Y M, HAN J, et al. Al doped into Si/P sites of Na3Zr2Si2PO12 with conducted Na3PO4 impurities for enhanced ionic conductivity[J]. ACS Applied Materials & Interfaces, 2023, 15(38): 44867-44875. [3] 宋碧清, 杨 飞, 张 涛. Mg2+掺杂对焦磷酸盐Sr2P2O7∶ Eu2+紫色荧光粉的发光性能影响[J]. 当代化工研究, 2024(8): 53-55. SONG B Q, YANG F, ZHANG T. Effect of Mg2+ doping on the luminescence performance of pyrophosphate Sr2P2O7∶ Eu2+ purple fluorescent powder[J]. Modern Chemical Research, 2024(8): 53-55 (in Chinese). [4] PRASAD M, HAZRA B, SARDAR A, et al. Molecular-level insights into a tripolyphosphate and pyrophosphate templated membrane assembly[J]. Soft Matter, 2023, 19(21): 3884-3894. [5] ZHANG Y, LIU X, LIU Q Y, et al. CaZn(HPO3)2 and Ba2Zn(HPO3)3: novel alkaline-earth zincophosphites with diversified anionic frameworks[J]. DaltonTransactions, 2023, 52(31): 10918-10926. [6] LIU G X, TANG R L, MA L, et al. Pb2Cl2(HPO3)(H2O) and Pb3Br2(HPO3)2: two phosphite halides with 3D structural networks and enlarged birefringence[J]. Inorganic Chemistry, 2023, 62(3): 1069-1074. [7] 印亚静. 磷酸盐纳米材料的应用综述[J]. 江苏教育学院学报(自然科学版), 2012, 28(5): 17-22. YIN Y J. Review on the application of phosphate nanomaterials[J]. Journal of Jiangsu Institute of Education (Natural Science), 2012, 28(5): 17-22 (in Chinese). [8] DE A A SOLER-ILLIA G J, SANCHEZ C, LEBEAU B, et al. Chemical strategies of design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchichal structures[J]. ChemInform, 2003, 34(3): 200303279. [9] PATOUX S, WURM C, MORCRETTE M, et al. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3[J]. Journal of Power Sources, 2003, 119: 278-284. [10] HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters, 2001, 4(10): A170. [11] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485. [12] ZHANG L S, XU M X, LIU B A, et al. New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition[J]. CrystEngComm, 2015, 17(25): 4705-4711. [13] ANIS M, HUSSAINI S S, SHKIR M, et al. Uncovering the influence of Ni2+ on optical and dielectric properties of NH4H2PO4 (ADP) crystal[J]. Optik, 2018, 157: 592-596. [14] LIU S, SHAO L Y, ZHANG X J, et al. KTiOPO4 as a novel anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 754: 147-152. [15] LI Z Q, CHEN Y, ZHU P F, et al. Electronic structure and properties of RbTiOPO4∶ Ta crystals[J]. RSC Advances, 2017, 7(84): 53111-53116. [16] CHEN J, XIONG L, CHEN L, et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure[J]. Journal of the American Chemical Society, 2018, 140(43): 14082-14086. [17] ZHAO S G, YANG X Y, YANG Y, et al. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation[J]. Journal of the American Chemical Society, 2018, 140(5): 1592-1595. [18] YANG X Y, ZHAO S G, GENG S P, et al. Structural origin of thermally induced second harmonic generation enhancement in RbNaMgP2O7[J]. Chemistry of Materials, 2019, 31(23): 9843-9849. [19] YU H W, YOUNG J, WU H P, et al. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications[J]. Chemistry of Materials, 2017, 29(4): 1845-1855. [20] ZHAO S G, GONG P F, LUO S Y, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge[J]. Angewandte Chemie (International Ed), 2015, 54(14): 4217-4221. [21] GUO Z W, JIANG H M, LI H, et al. Manipulating alkali charge compensation to improve red fluorescence and thermostability in Ba5P6O20∶ Eu3+ phosphor[J]. Applied Materials Today, 2024, 37: 102095. [22] ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of[PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563. [23] HU Y H, XU X, WANG R X, et al. [Sn3OF]PO4 vs.[Sn3F3]PO4: enhancing birefringence by breaking the R3 symmetry and realigning lone pairs[J]. Inorganic Chemistry Frontiers, 2024, 11(17): 5648-5656. [24] LI X B, HU C L, KONG F, et al. Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2: two new antimonous phosphates with distinct[Sb(PO4)2]structure types and enhanced birefringence[J]. Inorganic Chemistry, 2021, 60(3): 1957-1964. [25] HUANG J S, GAO R, LU Z G, et al. Sol-gel preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors[J]. Optical Materials, 2010, 32(9): 857-861. [26] STRADA M, SCHWENDIMANN G. La struttura cristallina di alcuni fosfati ed arseniati di metalli trivalenti. II. arseniato e fosfato di ittrio locality: synthetic[J]. Gazzetta Chimica Italiana, 1934, 64: 662-674. [27] ZACHARIASEN W H. The crystal structure of the normal orthophosphates of barium and strontium[J]. Acta Crystallographica, 1948, 1(5): 263-265. [28] KEPPLER U. Die struktur der tieftemperaturform des bleiphosphates, Pb3(PO4)2[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 1970, 132(1/2/3/4/5/6): 228-235. [29] TĀLE I, KŪLIS P, KRONGHAUZ V. Recombination luminescence mechanisms in Ba3(PO4)2[J]. Journal of Luminescence, 1979, 20(4): 343-347. [30] 张 季, 王 迪, 张德明, 等. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究[J]. 物理学报, 2013, 62(9): 097802. ZHANG J, WANG D, ZHANG D M, et al. Temperature-dependent Raman spectroscopic study on orthophosphates Ba3(PO4)2 and Sr3(PO4)2[J]. Acta Physica Sinica, 2013, 62(9): 097802 (in Chinese). [31] BENOIT J P, CHAPELLE J P. Raman spectrum of α and β-Pb3(PO4)2[J]. Solid State Communications, 1974, 15(3): 531-533. [32] MOONEY-SLATER R C L. Polymorphic forms of bismuth phosphate[J]. Zeitschrift Fur Kristallographie, 1962, 117(5/6): 371-385. [33] NACIRI Y, AHDOUR A, BENHSINA E, et al. Ba3(PO4)2 photocatalyst for efficient photocatalytic application[J]. Global Challenges, 2024, 8(1): 2300257. [34] RISTIĆ Z, PIOTROWSKI W, MEDIĆ M N, et al. Near-infrared luminescent lifetime-based thermometry with Mn5+-activated Sr3(PO4)2 and Ba3(PO4)2 phosphors[J]. ACS Applied Electronic Materials, 2022, 4(3): 1057-1062. [35] BABU BALLIPALLI C, RAJAVARAM R, NARESH V, et al. Synthesis and photoluminescent characteristics of Sm3+-doped Ba3(PO4)2 phosphor hierarchical architectures[J]. Materials Science and Engineering: B, 2021, 264: 114979. [36] LAZORYAK B I, DIKHTYAR Y Y, SPASSKY D A, et al. Synthesis and photoluminescence properties of Ba3(PO4)2∶Eu3+/2+ phosphors[J]. Materials Research Bulletin, 2024, 176: 112799. [37] LI S Z, BISMAYER U, DING X D, et al. Ferroelastic shear bands in Pb3(PO4)2[J]. Applied Physics Letters, 2016, 108(2): 022901. [38] BISMAYER U, MIHAILOVA B, ANGEL R. Ferroelasticity in palmierite-type(1-x)Pb3(PO4)2-xPb3(AsO4)2[J]. Journal of Physics: Condensed Matter, 2017, 29(21): 213001. [39] RAZA F, NAWAZ F, MUJAHID A, et al. Switching of enhancement and suppression in dressed Eu3+∶YPO4 and Pr3+∶YPO4[J]. Physica Scripta, 2020, 95(7): 075107. [40] SUN L J, XU Q T, LU J Y, et al. Preparation and spectroscopic characteristics of Tm∶YPO4 crystal[J]. Journal of Luminescence, 2023, 257: 119763. [41] LI P, YUAN T L, LI F, et al. Phosphate ion-driven BiPO4∶Eu phase transition[J]. The Journal of Physical Chemistry C, 2019, 123(7): 4424-4432. [42] HAQ M R, EHSAN N, NISHAT S S, et al. Comprehensive first-principles modeling of experimentally synthesized BiPO4 polymorphs[J]. The Journal of Physical Chemistry C, 2024, 128(11): 4779-4788. [43] 王云杰, 文杜林, 苏 欣.A3PO4(A=Li, Na, K, Rb, Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1):123-131. WANG Y J, WEN D L, SU X. First-principles study on the electronic structure and optical properties of A3PO4(A=Li, Na, K, Rb, Cs)[J]. Journal of Synthetic Crystal, 2024, 53(1): 121-131 (in Chinese). [44] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [45] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048. [46] PFROMMER B G, CÔTÉ M, LOUIE S G, et al. Relaxation of crystals with the quasi-newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240. [47] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. [48] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [49] HISCOCKS J, FRISCH M J. Gaussian 09: IOps Reference[M]. Wallingford, CT, USA: Gaussian, 2009. [50] JI H P, HUANG Z H, XIA Z G, et al. Discovery of new solid solution phosphors via cation substitution-dependent phase transition in M3(PO4)2∶ Eu2+ (M = Ca/Sr/Ba) quasi-binary sets[J]. The Journal of Physical Chemistry C, 2015, 119(4): 2038-2045. [51] ANGEL R J, BISMAYER U, MARSHALL W G. Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: structure[J]. Journal of Physics: Condensed Matter, 2001, 13(22): 5353-5364. [52] ACHARY S N, ERRANDONEA D, MUÑOZ A, et al. Experimental and theoretical investigations on the polymorphism and metastability of BiPO4[J]. Dalton Transactions, England, 2013, 42(42): 14999-15015. [53] NI Y X, HUGHES J M, MARIANO A N. Crystal chemistry of the monazite and xenotime structures[J]. American Mineralogist, 1995, 80(1/2): 21-26. [54] HU L, MA X G, WEI Y, et al. Origin of photocatalytic activity of BiPO4: the first-principles calculations[J]. Chinese Journal of Structural Chemistry, 2017, 36(8): 1299-1306 (in Chinese). [55] LEVUSHKINA V S, SPASSKY D A, ALEKSANYAN E M, et al. Bandgap engineering of the LuxY1-xPO4 mixed crystals[J]. Journal of Luminescence, 2016, 171: 33-39. [56] 戴显英, 杨 程, 宋建军, 等. 应变Ge空穴有效质量的各向异性与各向同性[J]. 物理学报, 2012, 61(23): 237102. DAI X Y, YANG C, SONG J J, et al. Anisotropy and isotropy of hole effective mass of strained Ge[J]. Acta Physica Sinica, 2012, 61(23): 237102 (in Chinese). [57] KUMAR P, KUMAR A, DHAWAN T, et al. First principle calculation of structural, electronic, optical, elastic and thermodynamic properties of group IIA metal iodides: structure-property correlation[J]. Journal of Physics and Chemistry of Solids, 2023, 175: 111195. [58] 杨志华, 潘世烈. 新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189. YANG Z H, PAN S L. Recent research progress of design and prediction of new nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2019, 48(7): 1173-1189 (in Chinese). [59] 赵文武. BiOIO3和Bi2(IO4)(IO3)3晶体电子结构和光学性质研究[J]. 人工晶体学报, 2016, 45(12): 2850-2855. ZHAO W W. Study on the electronic structure and optical properties of BiOIO3 and Bi2(IO4)(IO3)3 crystals[J]. Journal of Synthetic Crystals, 2016, 45(12): 2850-2855 (in Chinese). |
[1] | MO Qiuyan, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Adsorption of SO2 and CO on ReS2 Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 107-114. |
[2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
[3] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[4] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
[5] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
[6] | MO Qiuyan, OU Manlin, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Effect of VI Group Elements Modification on the Electronic Properties of Two-Dimensional AlN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1620-1628. |
[7] | ZHONG Qiongli, WANG Xu, MA Kui, YANG Fashun. Effect of Al Doping on the Optical Properties of β-Ga2O3 Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1352-1360. |
[8] | SUN Liang, ZHANG Yu, WANG Qun. Electronic Structure and Magnetic Properties of the Bulk and (001) Surface of Heusler Alloy Mn2LiGe [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1378-1385. |
[9] | LIU Xiaoying, HUANG Haishen, SUN Li, PAN Mengmei, SHANG Zhenzhen. First-Principles Study on the Electronic and Magnetic Properties of MXene 2D Material CrVCF2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1386-1393. |
[10] | LENG Haoning, SUN Xiaoxiao, LIU Fengju, ZHAO Xiangmin. First-Principles Study on Phase Transition Behavior of LiVO3 under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1222-1230. |
[11] | LI Lihua, ZHOU Longjie, LIU Shuo, WANG Hang, HUANG Jinliang. First-Principles Study on Electronic Structure and Optical Properties of SnO2 (110)/FAPbBrI2 (001) Interface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1239-1248. |
[12] | HE Zhihao, GOU Jie, WANG Yunjie, QI Yajie, DING Jiafu, ZHANG Bo, ZHAO Xingsheng, PEI Yizhen, HOU Shuyu, SU Xin. First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1249-1256. |
[13] | ZHANG Bo, WANG Yunjie, QI Yajie, DING Jiafu, HE Zhihao, SU Xin. First Principles Study on the Structure-Property Relationship of Alkali Metal Molybdates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 999-1007. |
[14] | WANG Tao, ZHANG Yuhao, YIN Hairong. Structural Design and Photocatalytic Antimicrobial Properties of NaTaO3 Based on Density Functional Theory [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1051-1060. |
[15] | WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, CHEN Ming. First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 803-809. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||