[1] WANG W, YANG Q, QIAN K, et al. Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process[J]. Journal of Energy Chemistry, 2020, 47: 72-78. [2] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112. [3] ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899. [4] WANG B, TANG M, WU Y C, et al. A 2D layered natural ore as a novel solid-state electrolyte[J]. ACS Applied Energy Materials, 2019, 2(8): 5909-5916. [5] TRON A, JEONG S, PARK Y D, et al. Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14531-14538. [6] LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges[J]. Chemistry-A European Journal, 2021, 27(64): 15842-15865. [7] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. [8] CHEN L, WU H L, AI X P, et al. Toward wide-temperature electrolyte for lithium-ion batteries[J]. Battery Energy, 2022, 1(2): 20210006. [9] QIAN Y X, HU S G, ZOU X S, et al. How electrolyte additives work in Li-ion batteries[J]. Energy Storage Materials, 2019, 20: 208-215. [10] ZHANG Z Y, HU T S, SUN Q M, et al. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance[J]. Journal of Power Sources, 2020, 453: 227908. [11] WOTANGO A S, SU W N, HAREGEWOIN A M, et al. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25252-25262. [12] 赵 伟, 赵阳雨, 李步成, 等. 新型锂盐二氟草酸硼酸锂的研究进展[J]. 化工新型材料, 2013, 41(4): 21-23. ZHAO W, ZHAO Y Y, LI B C, et al. Research progress of a new lithium salt lithium oxalyldifluoroborate[J]. New Chemical Materials, 2013, 41(4): 21-23 (in Chinese). [13] CHENG F Y, ZHANG X Y, WEI P, et al. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries[J]. Science Bulletin, 2022, 67(21): 2225-2234. [14] LI L C, LV W X, CHEN J, et al. Lithium difluorophosphate (LiPO2F2): an electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 11900-11914. [15] JIANG B, LI J R, LUO B, et al. LiPO2F2 electrolyte additive for high-performance Li-rich cathode material[J]. Journal of Energy Chemistry, 2021, 60: 564-571. [16] BIAN X F, GE S X, PANG Q, et al. A novel lithium difluoro(oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode material[J]. Journal of Alloys and Compounds, 2018, 736: 136-142. [17] CHEN H X, LIU B, WANG Y, et al. Insight into wide temperature electrolyte based on lithiumdifluoro(oxalate)borate for high voltage lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876: 159966. [18] CHE Y X, LIN X Y, XING L D, et al. Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive[J]. Journal of Energy Chemistry, 2021, 52: 361-371. [19] GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672. [20] SHEN C, WANG S W, JIN Y, et al. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25441-25447. [21] CRESCE A V, RUSSELL S M, BAKER D R, et al. In situ and quantitative characterization of solid electrolyte interphases[J]. Nano Letters, 2014, 14(3): 1405-1412. [22] 吕晓伟. 添加剂TMSP,TMSB对三元正极材料电化学性能影响的研究[D]. 徐州: 中国矿业大学, 2018. LYU X W. Effect of additives TMSP and TMSB on electrochemical properties of ternary cathode materials[D]. Xuzhou: China University of Mining and Technology, 2018 (in Chinese). [23] 梁倩雯. 基于界面调控和电解液优化构筑高性能锂金属负极[D]. 广州: 华南理工大学, 2023. LIANG Q W. Construction of high performance lithium metal anode based on interface regulation and electrolyte optimization[D]. Guangzhou: South China University of Technology, 2023 (in Chinese). [24] JURNG S, BROWN Z L, KIM J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & Environmental Science, 2018, 11(9): 2600-2608. [25] LI Y K, CHENG B, JIAO F P, et al. The roles and working mechanism of salt-type additives on the performance of high-voltage lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16298-16307. |