[1] WANG J X, GUO J, LV Q Y, et al. Spectroscopic investigation of the novel orange-red phosphor Ca3La2W2O12∶Sm3+ with the high color purity for w-LED applications[J]. Journal of Luminescence, 2022, 241: 118459. [2] ANNADURAI G, KENNEDY S M M. Synthesis and photoluminescence properties of Ba2CaZn2Si6O17∶Eu3+ red phosphors for white LED applications[J]. Journal of Luminescence, 2016, 169: 690-694. [3] DU J W, PAN X Y, LIU Z P, et al. Highly efficient Eu3+-activated Ca2Gd8Si6O26 red-emitting phosphors: a bifunctional platform towards white light-emitting diode and ratiometric optical thermometer applications[J]. Journal of Alloys and Compounds, 2021, 859: 157843. [4] MA Z Z, JI X Z, WANG M, et al. Emerging new-generation white light-emitting diodes based on luminescent lead-free halide perovskites and perovskite derivatives[J]. Nano Select, 2022, 3(2): 280-297. [5] JU G F, HU Y H, CHEN L, et al. A reddish orange-emitting stoichiometric phosphor K3Eu(PO4)2 for white light-emitting diodes[J]. Optics & Laser Technology, 2012, 44(1): 39-42. [6] LIANG Y J, NOH H M, RAN W G, et al. The design and synthesis of new double perovskite (Na, Li)YMg(W, Mo)O6∶Eu3+ red phosphors for white light-emitting diodes[J]. Journal of Alloys and Compounds, 2017, 716: 56-64. [7] WANG X B, YAN X S, LI W W, et al. Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors[J]. Advanced Materials, 2012, 24(20): 2742-2747. [8] XIAO Y, XIAO W G, WU D, et al. An extra-broadband VIS-NIR emitting phosphor toward multifunctional LED applications[J]. Advanced Functional Materials, 2022, 32(7): 2109618. [9] WANG C Y, GU C T, ZENG T, et al. Bi2WO6 doped with rare earth ions: preparation, characterization and photocatalytic activity under simulated solar irradiation[J]. Journal of Rare Earths, 2021, 39(1): 58-66. [10] BIN J X, LIU H K, MEI L F, et al. Multi-color luminescence evolution and efficient energy transfer of scheelite-type LiCaGd(WO4)3∶Ln3+ (Ln=Eu, Dy, Tb) phosphors[J]. Ceramics International, 2019, 45(2): 1837-1845. [11] HUANG X Y, LI B, GUO H, et al. Molybdenum-doping-induced photoluminescence enhancement in Eu3+-activated CaWO4 red-emitting phosphors for white light-emitting diodes[J]. Dyes and Pigments, 2017, 143: 86-94. [12] 覃利琴, 杨黄根, 李冬兰, 等. 辅助水热法合成新颖CaWO4∶Ln3+(Ln=Tb, Eu, Dy, Sm)及其发光性能[J]. 中国陶瓷, 2019, 55(11): 20-25. QIN L Q, YANG H G, LI D L, et al. Assisted hydrothermal synthesis and photoluminescence properties of CaWO4∶Ln3+(Ln=Tb, Eu, Dy, Sm)[J]. China Ceramics, 2019, 55(11): 20-25 (in Chinese). [13] 蔡小勇, 姜洪喜. 红色荧光粉CaWO4∶Eu3+, Bi3+的制备和光学性能的研究[J]. 人工晶体学报, 2024, 53(5): 833-840. CAI X Y, JIANG H X. Preparation and luminesent property of CaWO4∶Eu3+, Bi3+ red phosphors[J]. Journal of Synthetic Crystals, 2024, 53(5): 833-840 (in Chinese). [14] MALLUR S B, KHOO T C, RIJAL S, et al. Peak stimulated emission cross sections and quantum efficiencies of Sm3+ and Sm3+-Eu3+ co-doped bismuth boro-tellurite glasses[J]. Materials Chemistry and Physics, 2021, 258: 123886. [15] 洪俊煌, 孟宪国, 许英朝, 等. 新型红色荧光粉Sr3CaNb2O9∶Sm3+, Eu3+的发光特性和能量传递分析[J]. 厦门理工学院学报, 2024, 32(1): 88-96. HONG J H, MENG X G, XU Y C, et al. Study on luminescence properties and energy transfer of novel red phosphors Sr3CaNb2O9∶Sm3+, Eu3+[J]. Journal of Xiamen University of Technology, 2024, 32(1): 88-96 (in Chinese). [16] LI G F, WEI Y G, LI Z M, et al. Synthesis and photoluminescence of Eu3+ doped CaGd2(WO4)4 novel red phosphors for white LEDs applications[J]. Optical Materials, 2017, 66: 253-260. [17] JIANG H X, LÜ S C. Intense red emission and two-way energy transfer in Sm3+, Eu3+ Co-doped NaLa(WO4)2 phosphors[J]. Materials Research Bulletin, 2019, 111: 140-145. [18] LING S, XIONG F B, YANG W B, et al. Novel Sm3+/Eu3+ co-doped Sr7Sb2O12 red-emitting phosphor for white LED[J]. Inorganic Chemistry Communications, 2023, 150: 110365. [19] KUMARI S, RAO A S, SINHA R K. Investigations on photoluminescence and energy transfer studies of Sm3+ and Eu3+ ions doped Sr9Y2W4O24 red emitting phosphors with high color purity for w-LEDs[J]. Journal of Molecular Structure, 2024, 1295: 136507. [20] TÜREMIŞ M, KESKIN I Ç, KATı M I, et al. Comprehensive study on structural, thermal, morphological and luminescence (RL, PL, TL) properties of CaLa2(WO4)4∶Tb3+, Dy3+ phosphors synthesized via sol-gel method[J]. Ceramics International, 2021, 47(18): 25708-25720. [21] LI L, CHANG W X, CHEN W Y, et al. Double perovskite LiLaMgWO6∶Eu3+ novel red-emitting phosphors for solid sate lighting: synthesis, structure and photoluminescent properties[J]. Ceramics International, 2017, 43(2): 2720-2729. [22] DU Y F, LI Y X, ZHAO Y X, et al. Novel red-emitting Cd2MgTeO6∶Eu3+ phosphors with an abnormal thermal quenching for application in w-LEDs and potential fingerprint detection[J]. Journal of Luminescence, 2023, 260: 119893. [23] XIA M F, JU Z H, YANG H, et al. Red-emitting enhancement by inducing lower crystal field symmetry of Eu3+ site in CaWO4∶Eu3+ phosphor for n-UV w-LEDs[J]. Journal of Alloys and Compounds, 2018, 739: 439-446. [24] LI G F, WEI Y G, LONG W X, et al. Photoluminescence properties, energy transfer and thermal stability of the novel red-emitting CaGd2(WO4)4∶Eu3+, Sm3+ phosphors[J]. Materials Research Bulletin, 2017, 95: 86-94. [25] KADAM A R, DHOBLE S J. Energy transfer mechanism of KAlF4∶Dy3+, Eu3+ co-activated down-conversion phosphor as spectral converters: an approach towards improving photovoltaic efficiency by downshifting layer[J]. Journal of Alloys and Compounds, 2021, 884: 161138. |