[1] CHEONG S W, MOSTOVOY M. Multiferroics: a magnetic twist for ferroelectricity[J]. Nature Materials, 2007, 6(1): 13-20. [2] DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology[J]. Advances in Physics, 2015, 64(5/6): 519-626. [3] BIAN R, LI C, LIU Q, et al. Recent progress in the synthesis of novel two-dimensional van der Waals materials[J]. National Science Review, 2022, 9(5): nwab164. [4] GAO F Y, PENG X Y, CHENG X L, et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic[J]. Nature, 2024, 632: 273-279. [5] SPALDIN N A, FIEBIG M. The renaissance of magnetoelectric multiferroics[J]. Science, 2005, 309(5733): 391-392. [6] CHANG K, LIU J W, LIN H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe[J]. Science, 2016, 353(6296): 274-278. [7] ZHANG N, JALIL A, WU D X, et al. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. Journal of the American Chemical Society, 2018, 140(30): 9434-9443. [8] HUANG C X, DU Y P, WU H P, et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer[J]. Physical Review Letters, 2018, 120(14): 147601. [9] QI J S, WANG H, CHEN X F, et al. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism[J]. Applied Physics Letters, 2018, 113(4): 043102. [10] AI H Q, SONG X H, QI S Y, et al. Intrinsic multiferroicity in two-dimensional VOCl2 monolayers[J]. Nanoscale, 2019, 11(3): 1103-1110. [11] TAN H X, LI M L, LIU H T, et al. Two-dimensional ferromagnetic-ferroelectric multiferroics in violation of the d0 rule[J]. Physical Review B, 2019, 99(19): 195434. [12] DING N, CHEN J, DONG S, et al. Ferroelectricity and ferromagnetism in a VOI2 monolayer: role of the dzyaloshinskii-moriya interaction[J]. Physical Review B, 2020, 102(16): 165129. [13] YOU H P, DING N, CHEN J, et al. Prediction of two-dimensional ferromagnetic ferroelectric VOF2 monolayer[J]. Physical Chemistry Chemical Physics, 2020, 22(41): 24109-24115. [14] ZHANG Y, LIN L F, MOREO A, et al. Peierls transition, ferroelectricity, and spin-singlet formation in monolayer VOI2[J]. Physical Review B, 2021, 103(12): L121114. [15] APOSTOLOV A T, APOSTOLOVA I N, WESSELINOWA J M. Origin of multiferroism in VOX2 (X=Cl, Br, I) monolayers[J]. Nanomaterials, 2024, 14(5): 408. [16] HILL N A. Why are there so few magnetic ferroelectrics?[J]. The Journal of Physical Chemistry B, 2000, 104(29): 6694-6709. [17] ANNAPU REDDY V, PATHAK N P, NATH R. Enhanced magnetoelectric coupling in transition-metal-doped BiFeO3 thin films[J]. Solid State Communications, 2013, 171: 40-45. [18] SUI X L, SI C, SHAO B, et al. Tunable magnetism in transition-metal-decorated phosphorene[J]. The Journal of Physical Chemistry C, 2015, 119(18): 10059-10063. [19] XU B, YIN K B, LIN J, et al. Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3[J]. Physical Review B, 2009, 79(13): 134109. [20] CHEN X Y, TIAN R Y, WU J M, et al. Fe, Mn, and Cr doped BiCoO3 for magnetoelectric application: a first-principles study[J]. Journal of Physics: Condensed Matter, 2011, 23(32): 326005. [21] CHEN X Y, CHEN L J, ZHAO Y J. The magnetoelectric properties of A- or B-site-doped PbVO3films: a first-principles study[J]. Chinese Physics B, 2013, 22(8): 087703. [22] LIU Y Y, ZHOU W, TANG G, et al. Coexistence of magnetism and ferroelectricity in 3d transition-metal-doped SnTe monolayer[J]. The Journal of Physical Chemistry C, 2019, 123(47): 28919-28924. [23] YANG H, PAN L F, XIAO M Q, et al. Iron-doping induced multiferroic in two-dimensional In2Se3[J]. Science China Materials, 2020, 63(3): 421-428. [24] ZHANG C M, ZHANG L, TANG C, et al. First-principles study of a Mn-doped In2Se3 monolayer: coexistence of ferromagnetism and ferroelectricity with robust half-metallicity and enhanced polarization[J]. Physical Review B, 2020, 102(13): 134416. [25] BENEDEK N A, FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling[J]. Physical Review Letters, 2011, 106(10): 107204. [26] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical review B, 1996, 54(16): 11169. [27] FÖRST C J, ASHMAN C R, SCHWARZ K, et al. The interface between silicon and a high-k oxide[J]. Nature, 2004, 427(6969): 53-56. [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [29] ANISIMOV V I, ARYASETIAWAN F, LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method[J]. Journal of Physics: Condensed Matter, 1997, 9(4): 767-808. [30] COCOCCIONI M, DE GIRONCOLI S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method[J]. Physical Review B, 2005, 71(3): 035105. [31] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [32] RESTA R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach[J]. Reviews of Modern Physics, 1994, 66(3): 899-915. [33] KING-SMITH R D, VANDERBILT D. Theory of polarization of crystalline solids[J]. Physical Review B, 1993, 47(3): 1651-1654. [34] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. |