Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 809-818.DOI: 10.16553/j.cnki.issn1000-985x.2024.0303
• Research Articles • Previous Articles Next Articles
JIA Xiuyang1(), JIA Zhigang1,2(
), DONG Hailiang1,2, CHEN Xiaodong1, GAO Maolin1, XU Bingshe1,2,3
Received:
2024-11-29
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
JIA Xiuyang, JIA Zhigang, DONG Hailiang, CHEN Xiaodong, GAO Maolin, XU Bingshe. Symmetric Oxide Confinement Structure Improves 795 nm VCSEL Single-Mode Power[J]. Journal of Synthetic Crystals, 2025, 54(5): 809-818.
Fig.2 Standing wave refractive index distribution diagrams of VCSEL. (a) Single oxide confinement structure; (b) symmetric double oxide confinement structure; (c) symmetric quadruple oxide confinement structure
Fig.4 Electrical performance parameters of VCSEL with different structures. (a) P-I curves; (b) stimulated radiative recombination rate distribution in multiple quantum wells
Fig.6 Electrical performance parameters of VCSEL with different structures. (a) P-I-V curves; (b) radial distribution of current density near the first quantum well on the n-side
Fig.7 Electrical performance parameters of VCSEL with different structures. (a) Distribution of stimulated radiative recombination rate; (b) PCE-I?curves
Fig.10 Distribution of the three modes of different structures in radial direction. (a) Single oxide confinement structure; (b) symmetric double oxide confinement structure; (c) symmetric quadruple oxide confinement structure
Structure | Γ of the three modes/% | ||
---|---|---|---|
LP01 | LP11 | LP21 | |
Single oxide confined | 92.4 | 71.8 | 47.4 |
Double oxide confined | 94.8 | 80.5 | 63.4 |
Quadruple oxide confined | 95.9 | 84.7 | 71.5 |
Table 1 Γ of the three modes or VCSELs with different structures
Structure | Γ of the three modes/% | ||
---|---|---|---|
LP01 | LP11 | LP21 | |
Single oxide confined | 92.4 | 71.8 | 47.4 |
Double oxide confined | 94.8 | 80.5 | 63.4 |
Quadruple oxide confined | 95.9 | 84.7 | 71.5 |
1 | KITCHING J, KNAPPE S, LIEW L, et al. Microfabricated atomic clocks[C]// 18th IEEE International Conference on Micro Electro Mechanical Systems, January 30-February 3, 2005, Miami Beach, FL, USA. IEEE, 2005: 1-7. |
2 | SERKLAND D K, GEIB K M, PEAKE G M, et al. VCSELs for atomic sensors[C]// Vertical-Cavity Surface-Emitting Lasers XI. San Jose, CA. SPIE, 2007: 648406. |
3 | MALEEV N A, BLOKHIN S A, BOBROV M A, et al. Laser source for a compact nuclear magnetic resonance gyroscope[J]. Gyroscopy and Navigation, 2018, 9(3): 177-182. |
4 | JUNG C, JÄGER R, GRABHERR M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 1997, 33(21): 1790. |
5 | ZHANG J, NING Y Q, ZENG Y G, et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks[J]. Laser Physics Letters, 2013, 10(4): 045802. |
6 | SUN Y R, DONG J R, ZHAO Y M, et al. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches[J]. Optical and Quantum Electronics, 2017, 49(11): 361. |
7 | ZHOU Y L, JIA Y C, ZHANG X, et al. Large-aperture single-mode 795 nm VCSEL for chip-scale nuclear magnetic resonance gyroscope with an output power of 4.1 mW at 80 ℃[J]. Optics Express, 2022, 30(6): 8991-8999. |
8 | XUN M, PAN G Z, ZHAO Z Z, et al. High single fundamental-mode output power from 795 nm VCSELs with a long monolithic cavity[J]. IEEE Electron Device Letters, 2023, 44(7): 1144-1147. |
9 | HUFFAKER D L, DEPPE D G, KUMAR K, et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers[J]. Applied Physics Letters, 1994, 65(1): 97-99. |
10 | MOSER P, LOTT J A, LARISCH G, et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J]. Journal of Lightwave Technology, 2015, 33(4): 825-831. |
11 | SHARIZAL A M, LEISHER P O, CHOQUETTE K D, et al. Effect of oxide aperture on the performance of 850nm vertical-cavity surface-emitting lasers[J]. Optik, 2009, 120(3): 121-126. |
12 | 聂语葳, 李 伟, 吕家纲, 等. 氧化限制型795 nm垂直腔面发射激光器[J]. 中国激光, 2024, 51(6): 0601004. |
NIE Y W, LI W, LYU J G, et al. Oxidation-limited 795 nm vertical cavity surface emission laser[J]. Chinese Journal of Lasers, 2024, 51(6): 0601004 (in Chinese). | |
13 | ALMUNEAU G, BOSSUYT R, COLLIÈRE P, et al. Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs[J]. Semiconductor Science and Technology, 2008, 23(10): 105021. |
14 | FENG Y, LIU G J, YAN C L, et al. A study on the law of oxidation rate in GaAs-based VCSELs[J]. Optik, 2014, 125(18): 5124-5127. |
15 | 陈 磊, 罗 妍, 冯 源, 等. 基于VCSEL的湿法氧化工艺的温度依赖性研究[J]. 中国激光, 2020, 47(7): 0701023. |
CHEN L, LUO Y, FENG Y, et al. Temperature dependence of wet oxidation process based on VCSEL[J]. Chinese Journal of Lasers, 2020, 47(7): 0701023 (in Chinese). | |
16 | OU Y, GUSTAVSSON J S, WESTBERGH P, et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1840-1842. |
17 | HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers[J]. Journal of Lightwave Technology, 2016, 34(2): 269-277. |
18 | LIU M, WANG C Y, FENG M, et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs[C]// 2016 Optical Fiber Communications Conference and Exhibition (OFC). March 20-24, 2016, Anaheim, CA, USA. IEEE, 2016: 1-3. |
19 | CHENG C H, SHEN C C, KAO H Y, et al. 850/940-nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005. |
20 | SAMAL N, JOHNSON S R, DING D, et al. High-power single-mode vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 2005, 87(16): 161108. |
21 | CHANG K S, SONG Y M, LEE Y T. Stable single-mode operation of VCSELs with a mode selective aperture[J]. Applied Physics B, 2007, 89(2): 231-234. |
22 | YAZDANYPOOR M, GHOLAMI A. Optimizing optical output power of single-mode VCSELs using multiple oxide layers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701708. |
23 | YAZDANYPOOR M, EMAMI F. High power single mode multi-oxide layer VCSEL with optimized thicknesses and aperture sizes of oxide layers[J]. Journal of the Optical Society of Korea, 2014, 18(2): 167-173. |
24 | 李海军, 钟景昌, 郝永琴, 等. 湿法氧化工艺对VCSEL器件性能的影响[J]. 中国电子科学研究院学报, 2006, 1(4): 369-372. |
LI H J, ZHONG J C, HAO Y Q, et al. The influence of wet oxidation for VCSELs' charactors[J]. Journal of China Academy of Electronics and Information Technology, 2006, 1(4): 369-372 (in Chinese). | |
25 | CHUANG S L. Physics of optoelectronic devices[M]. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2005: 28-50. |
26 | PASSARO V M N, MAGNO F, DE LEONARDIS F. Optimization of Bragg reflectors in AlGaAs/GaAs VCSELs[J]. Laser Physics Letters, 2005, 2(5): 239-246. |
27 | HADLEY G R, LEAR K L, WARREN M E, et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 607-616. |
28 | PIPREK J. Semiconductor optoelectronic devices: introduction to physics and simulation[M]. Amsterdam: Elsevier, 2003. |
29 | WACHUTKA G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1990, 9(11): 1141-1149. |
30 | GAO Y B, ZHANG Y H, CHU C S, et al. Effectively confining the lateral current within the aperture for GaN based VCSELs by using a reverse biased NP junction[J]. IEEE Journal of Quantum Electronics, 2020, 56(4): 2400507. |
31 | BOND A E, DAPKUS P D, O’BRIEN J D. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 1998, 10(10): 1362-1364. |
32 | PAN G Z, XUN M, ZHAO Z Z, et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser[J]. IEEE Electron Device Letters, 2021, 42(9): 1342-1345. |
33 | 庄顺连. 光子器件物理[M]. 2版. 北京: 电子工业出版社, 2013: 30-31. |
ZHUANG S L. Photonic device physics[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2013: 30-31 (in Chinese). | |
34 | WANG G, YANG Q. Optimization of the operating point of a vertical-cavity surface-emitting laser[J]. IEEE Journal of Quantum Electronics, 1995, 32: 1441-1449. |
35 | XIAO Y, WANG J, LIU H, et al. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%[J]. Light, Science & Applications, 2024, 13(1): 60. |
36 | 杨 浩, 郭 霞, 关宝璐, 等. 注入电流对垂直腔面发射激光器横模特性的影响[J]. 物理学报, 2008, 57(5): 2959-2965. |
YANG H, GUO X, GUAN B L, et al. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers[J]. Acta Physica Sinica, 2008, 57(5): 2959-2965 (in Chinese). |
[1] | GAO Jiaqing, QU Xiaoyong, WU Xiang, GUO Yonggang, WANG Yonggang, WANG Liang, TAN Xin, YANG Xinze. Tunneling Oxidation and Passivation Process of p-Type TOPCon Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 133-138. |
[2] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
[3] | GU Xiaoying, ZHAO Qingsong, NIU Xiaodong, DI Juqing, ZHANG Jiaying, XIAO Yi, LUO Kai. Preparation and Properties of 13N Ultra-High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 497-502. |
[4] | ZHANG Bo, SONG Zhicheng, NI Yufeng, WEI Kaifeng. Boron Doping Technology for the Front Polysilicon Layer of Full TOPCon Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 329-335. |
[5] | LI Jia, YUAN Zhongchun, YAO Mengqin, LIU Fei, MA Jun. Preparation of Polymorph MnO2-Ru Composite Catalyst and Its Electrocatalytic Performance for Oxygen Evolution in Water [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 336-343. |
[6] | ZHAN Tingwu, JIA Wei, DONG Hailiang, LI Tianbao, JIA Zhigang, XU Bingshe. Preparation and Optical Properties of Porous GaN Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1599-1608. |
[7] | ZHAO Feiyun, REN Aobo, WU Jiang. High-Power Multi-Junction 905 nm Vertical-Cavity Surface-Emitting Lasers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 818-824. |
[8] | YANG Song, HE Yingzi, WANG Jianwei, ZHANG Min, WANG Xu. Effect of Zinc Doping on the Structure and Multiferroic Properties of Bismuth Ferrite Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 621-628. |
[9] | YANG Shuang, SONG Guihong, CHEN Yu, RAN Liyang, HU Fang, WU Yusheng, YOU Junhua. Microstructure and Thermoelectric Properties of Mg3Bi2/Mg2Sn Nanocomposite Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 467-475. |
[10] | HE Dong, XU Wenbo, HU Wenpeng, CHENG Dawei, TONG Liang. Preparation of YBCO Films by Water-Based Sol-Gel Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1688-1693. |
[11] | HUO Haibo, ZHENG Yajuan, MA Huali, DONG Zihua, LI Qianqian, LI Mingyu, DING Pei, ZENG Fanguang. Field Emission Characteristics Based on Monomer Graphite Fiber [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 866-870. |
[12] | WANG Xinyue, ZHANG Zhaocheng, LI Zhijie, HE Wanting, WEN Jinxiu, LUO Jianyi, TANG Xiufeng, WANG Yi. Effects of the Substrate Heating Temperature on Properties of ITO Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 858-865. |
[13] | LIU Zhenhua, FAN Long, FU Yajun, WANG Jin, CAO Linhong, WU Weidong. Structure and Photoelectric Properties of ZnO Single Crystal Grown by Homoepitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 768-775. |
[14] | HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang. Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 209-243. |
[15] | YU Limin, MIAO Chang, LI Rui, TAN Yi, XIAO Wei. Electrochemical Performance of Metal Tin Film Anodes Prepared by Electrodeposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2344-2349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||