Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 737-756.DOI: 10.16553/j.cnki.issn1000-985x.2024.0309
• Reviews • Previous Articles Next Articles
DU Qingbo(), YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang(
)
Received:
2024-12-09
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector[J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756.
Fig.1 SiC detector schematic diagram and three effects competition diagram. (a) Schematic diagram of SiC detector principle[14]; (b) schematic diagram of three main effect advantages[16]
缺陷类型 | 影响 |
---|---|
基面位错 | 导致载流子寿命局部降低,增加探测器漏电流 |
螺型位错与微管 | 导致雪崩前反向偏置点提前失效,降低击穿电压 |
表面宏观缺陷 | 增大漏电流,明显降低击穿电压 |
堆垛层错 | 导致电荷积累,产生静电势,增加正向电压降 |
Table 1 Influences of different defects on the performance of silicon carbide detector
缺陷类型 | 影响 |
---|---|
基面位错 | 导致载流子寿命局部降低,增加探测器漏电流 |
螺型位错与微管 | 导致雪崩前反向偏置点提前失效,降低击穿电压 |
表面宏观缺陷 | 增大漏电流,明显降低击穿电压 |
堆垛层错 | 导致电荷积累,产生静电势,增加正向电压降 |
性能 | Si | Ge | 6H-SiC | GaAs | GaN | 4H-SiC | 金刚石 |
---|---|---|---|---|---|---|---|
禁带宽度/eV | 1.12 | 0.66 | 3.0 | 1.43 | 3.4 | 3.26 | 5.5 |
击穿电场强度/(MV·cm-1) | 0.5 | 0.1 | 2.4 | 0.6 | 0.41 | 3 | 10 |
介电常数 | 11.8 | 16.2 | 10 | 12.9 | 9.6 | 9.66 | 5.5 |
电子迁移率/(cm2·V-1·s-1) | 1 450 | 3 900 | 370 | ≤8 500 | 1 000 | 1 020 | 2 200 |
空穴迁移率/(cm2·V-1·s-1) | 450 | 1 900 | 50 | ≤400 | 30 | 115 | 1 600 |
密度/(g·cm-3) | 2.33 | 5.3 | 3.2 | 5.37 | 6.2 | 3.22 | 3.51 |
热导率/(W·cm-1·K-1) | 1.48 | 0.6 | 3.6 | 0.54 | 1.5 | 5 | 20 |
Table 2 Properties of 4H-SiC and other semiconductor materials
性能 | Si | Ge | 6H-SiC | GaAs | GaN | 4H-SiC | 金刚石 |
---|---|---|---|---|---|---|---|
禁带宽度/eV | 1.12 | 0.66 | 3.0 | 1.43 | 3.4 | 3.26 | 5.5 |
击穿电场强度/(MV·cm-1) | 0.5 | 0.1 | 2.4 | 0.6 | 0.41 | 3 | 10 |
介电常数 | 11.8 | 16.2 | 10 | 12.9 | 9.6 | 9.66 | 5.5 |
电子迁移率/(cm2·V-1·s-1) | 1 450 | 3 900 | 370 | ≤8 500 | 1 000 | 1 020 | 2 200 |
空穴迁移率/(cm2·V-1·s-1) | 450 | 1 900 | 50 | ≤400 | 30 | 115 | 1 600 |
密度/(g·cm-3) | 2.33 | 5.3 | 3.2 | 5.37 | 6.2 | 3.22 | 3.51 |
热导率/(W·cm-1·K-1) | 1.48 | 0.6 | 3.6 | 0.54 | 1.5 | 5 | 20 |
探测器类型 | 工作温度 | 辐照损伤特性 | 能量分辨率 | 制作工艺 |
---|---|---|---|---|
SiC基 | 室温可使用,能在反应堆级别温度下使用,理论极限工作高温可达1 240 ℃ | 在大剂量α/β/γ射线、等效1 MeV中子注量低于5×1013 cm-2或8 MeV质子注量低于3×1014 cm-2辐照条件下探测器几乎都无辐照损伤 | 平均电离能7.78 eV,探测α粒子最优为0.25%,优于气体探测器和闪烁体探测器 | 能生产出高质量、大尺寸(6英寸和8英寸)的晶体,器件制作工艺在宽禁带半导体中较为成熟 |
Si基 | 需要使用液氮冷却或电制冷在-20 ℃低温下才能稳定工作 | 原子离位阈能13~20 eV,性能随辐照强度增加急剧下降,中子注量达1013 cm-2量级严重退化[ | 平均电离能3.6 eV,在沉积相同能下,能量分辨率优于SiC基 | 晶体生长与器件制作工艺成熟 |
Ge基 | 室温不能使用,需要在低温下才能稳定工作 | 原子离位阈能16~20 eV,耐辐照能力与Si基相似,强辐照场下性能急剧下降 | 平均电离能2.95 eV,能量分辨率最高,优于Si基 | 具有成熟的晶体生长与器件制作工艺 |
GaAs基 | 室温下能使用,可在高温达120 ℃下工作 | 20 MeV电子剂量低于0.5MGy或1MeV中子注量低于1.3×1014 cm-2辐照后可使用[ | 平均电离能4.8 eV,能量分辨率优于SiC基 | 晶体质量优异且技术成熟,相对第三代半导体成本低 |
金刚石 | 室温可工作,工作高温可达650 ℃以上[ | 在1015 质子/cm2、250 Mrad光子或3×1015 中子/cm2辐照条件下几乎都无辐照损伤[ | 平均电离能13.6 eV,能量分辨率比SiC基差 | 难以生长出高质量、大尺寸金刚石晶体,器件制作难 |
Table 3 Comparison of characteristics of different types of nuclear radiation detectors
探测器类型 | 工作温度 | 辐照损伤特性 | 能量分辨率 | 制作工艺 |
---|---|---|---|---|
SiC基 | 室温可使用,能在反应堆级别温度下使用,理论极限工作高温可达1 240 ℃ | 在大剂量α/β/γ射线、等效1 MeV中子注量低于5×1013 cm-2或8 MeV质子注量低于3×1014 cm-2辐照条件下探测器几乎都无辐照损伤 | 平均电离能7.78 eV,探测α粒子最优为0.25%,优于气体探测器和闪烁体探测器 | 能生产出高质量、大尺寸(6英寸和8英寸)的晶体,器件制作工艺在宽禁带半导体中较为成熟 |
Si基 | 需要使用液氮冷却或电制冷在-20 ℃低温下才能稳定工作 | 原子离位阈能13~20 eV,性能随辐照强度增加急剧下降,中子注量达1013 cm-2量级严重退化[ | 平均电离能3.6 eV,在沉积相同能下,能量分辨率优于SiC基 | 晶体生长与器件制作工艺成熟 |
Ge基 | 室温不能使用,需要在低温下才能稳定工作 | 原子离位阈能16~20 eV,耐辐照能力与Si基相似,强辐照场下性能急剧下降 | 平均电离能2.95 eV,能量分辨率最高,优于Si基 | 具有成熟的晶体生长与器件制作工艺 |
GaAs基 | 室温下能使用,可在高温达120 ℃下工作 | 20 MeV电子剂量低于0.5MGy或1MeV中子注量低于1.3×1014 cm-2辐照后可使用[ | 平均电离能4.8 eV,能量分辨率优于SiC基 | 晶体质量优异且技术成熟,相对第三代半导体成本低 |
金刚石 | 室温可工作,工作高温可达650 ℃以上[ | 在1015 质子/cm2、250 Mrad光子或3×1015 中子/cm2辐照条件下几乎都无辐照损伤[ | 平均电离能13.6 eV,能量分辨率比SiC基差 | 难以生长出高质量、大尺寸金刚石晶体,器件制作难 |
Fig.5 Main preparation method of SiC single crystal substrate. (a)Top seed solution growth method[39]; (b)high temperature chemical vapor deposition[41]; (c)physical vapor transfer method[45]
Fig.6 Real picture of SiC single crystal substrate grown by solution method. (a) 3 inch 4H-SiC by Sumitomo[47]; (b) 3.75 inch 4H-SiC by Sumitomo[48]; (c) 2 inch 4H-SiC by Toyota[49]; (d) 4 inch 4H-SiC by Toyota[50]; (e) 4 inch 4H-SiC grown at Institute of Physics CAS[54]
外延生长方法 | 优点 | 缺点 |
---|---|---|
CVD | 能精确控制外延厚度和掺杂浓度,生长速率合适,表面形貌好 | 需要高纯的生长源,难以控制外延层中的缺陷密度 |
MBE | 生长温度低,高精度厚度,能生长不同SiC晶型,利于超精细结构生长 | 成本高,生长速率低,不适于功率器件外延的制备 |
LPE | 成本低,高生长速率,低缺陷密度,高缺陷闭合效率 | 难控制掺杂浓度,表面形貌粗糙,要准确控制热平衡条件 |
Table 4 Advantages and disadvantages of several common SiC epitaxial growth methods
外延生长方法 | 优点 | 缺点 |
---|---|---|
CVD | 能精确控制外延厚度和掺杂浓度,生长速率合适,表面形貌好 | 需要高纯的生长源,难以控制外延层中的缺陷密度 |
MBE | 生长温度低,高精度厚度,能生长不同SiC晶型,利于超精细结构生长 | 成本高,生长速率低,不适于功率器件外延的制备 |
LPE | 成本低,高生长速率,低缺陷密度,高缺陷闭合效率 | 难控制掺杂浓度,表面形貌粗糙,要准确控制热平衡条件 |
Fig.9 Study on heavy ion detection by SiC detector[75]. (a) Section of 4H-SiC Schottky detector; (b) current-voltage characteristic diagram of Schottky 4H-SiC detector prepared; (c) detection spectra of 132Xe23+ with different energies by 4H-SiC detector with epitaxial layer thickness of 25 μm; (d) detection spectra of 132Xe23+ with different energies by a 4H-SiC detector with epitaxial layer thickness of 50 μm; (e) energy dependence diagram of detector PHD and Xe ion; (f) Xe ion peak and energy dependence diagram
Fig.10 Study on α particle detection by 50 μm epitaxial layer SiC detector[76]. (a) Detector structure diagram; (b) schematic diagram of the device for detecting α particle spectrum by SiC detector; (c) drawings of actual experimental installations; (d) reverse current-voltage characteristics of 4H-SiC detector at different temperatures up to 500 ℃
Fig.11 Research on fast neutron detection by SiC detector. (a) Structure diagram of self-biased SiC based neutron detector[81]; (b) comparison between simulation results and measured results at some characteristic peaks[84]
Fig.12 Research on various types of SiC neutron detectors. (a) PHD diagram of thermal neutron fluence of LiF type silicon carbide detector[87]; (b) PHD diagram of thermal neutron fluence of air-type silicon carbide detector[87]; (c) physical picture of PIN-type SiC detector[89]; (d) diagram of the detector's time response test results[89]
Detector | TNR | L-shift | ΔR |
---|---|---|---|
Si-LiF | 3×10-2 | Yes | -5%×1012 cm2 |
SiC-LiF | 3×10-2 | Yes | No |
SiC-air | 3.5×10-8 | Very little | No |
Table 5 Summary of thermal neutron response and damage characteristics of several different detectors[88]
Detector | TNR | L-shift | ΔR |
---|---|---|---|
Si-LiF | 3×10-2 | Yes | -5%×1012 cm2 |
SiC-LiF | 3×10-2 | Yes | No |
SiC-air | 3.5×10-8 | Very little | No |
Fig.13 Detection of thermal neutrons and fast neutrons by SiC nuclear radiation detector[91]. (a) Response diagram of the detector covered with LiF to thermal neutrons; (b) change of counting rate of LiF coated detector with beam current; (c) diagram of experimental apparatus for fast neutron detection; (d) neutron detection results of SiC detector without transition layer
Fig.14 X-ray SiC nuclear radiation detector. (a) Schottky SiC detector structure diagram[93]; (b) SiC array detector diagram[93]; (c) X-ray spectra of 241Am source detected by SiC array detector[93]; (d) 241Am X-ray spectra detected by high-resolution X-ray SiC detector at 27 and 100 °C[31]
Fig.15 Feasibility study of commercial power SiC Schottky diode as silicon carbide γ-radiation detector[97]. (a) Structure diagram of SiC Schottky diode; (b) relationship between leakage current and reverse bias of two different power Schottky SiC diodes; (c) waveform diagram of the radiation-induced current response of diode 1 at different gamma dose rates at a reverse bias voltage of 10 V; (d) waveform diagram of the radiation-induced current response waveform of diode 1 at different gamma dose rates at a reverse bias of 200 V; (e) waveform diagram of the radiation-induced current response of diode 2 at different gamma dose rates at a reverse bias of 10 V; (f) waveform diagram of the radiation-induced current response of diode 2 at different gamma dose rates at a reverse bias of 200 V; (g) curve of radiation induced current with dose rate of two Schottky SiC diodes at each reverse bias voltage; (h) transition diagram of diode 1 from leakage current to radiation induced current when the dose rate is 0.258 Gy/h; (i) transition diagram of diode 1 from leakage current to radiation induced current when the dose rate of 26.312 Gy/h
Fig.16 SiC nuclear radiation detection system for detecting gamma dose rate of strong radiation field[98]. (a) Unpackaged SiC-based gamma-ray detector; (b) detector drawings for packaged and welded SMA connectors; (c) structure diagram of silicon carbide nuclear radiation detection system; (d) output signal diagram of preamplifier when silicon carbide γ detector detects 137Cs; (e) silicon carbide gamma detector test layout diagram; (f) conversion curves of detector count rate and gamma dose rate; (g) irradiation experiment layout diagram of silicon carbide γ detector in n/γ mixed radiation field; (h) fitting curve of the relationship between the total number of silicon carbide γ detector before and after irradiation and the accelerator pulse frequency
1 | HAINO S. Performance of the AMS-02 silicon tracker in the ISS mission[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 699: 221-224. |
2 | TURALA M. Silicon tracking detectors: historical overview[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 541(1/2): 1-14. |
3 | BRUZZI M. Radiation damage in silicon detectors for high-energy physics experiments[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 960-971. |
4 | KOUZES R T, LINTEREUR A T, SICILIANO E R. Progress in alternative neutron detection to address the helium-3 shortage[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 172-175. |
5 | GEBAUER B. Towards detectors for next generation spallation neutron sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 535(1/2): 65-78. |
6 | 黄海栗. SiC粒子辐照探测器性能及其性能退化的研究[D]. 西安: 西安电子科技大学, 2019. |
HUANG H L. Study on performance and performance degradation of SiC particle irradiation detector[D]. Xi’an: Xidian University, 2019 (in Chinese). | |
7 | XU M, GIRISH Y R, RAKESH K P, et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533. |
8 | MORKOC H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. |
9 | CAPAN I. Wide-bandgap semiconductors for radiation detection: a review[J]. Materials, 2024, 17(5): 1147. |
10 | WANG L, JARRELL J, XUE S, et al. Fast neutron detection at near-core location of a research reactor with a SiC detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 126-131. |
11 | RUDDY F H, OTTAVIANI L, LYOUSSI A, et al. Silicon carbide neutron detectors for harsh nuclear environments: a review of the state of the art[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 792-803. |
12 | CHAUDHURI S K, MANDAL K C. Radiation detection using n-type 4H-SiC epitaxial layer surface barrier detectors[M]// Advanced Materials for Radiation Detection. Cham: Springer International Publishing, 2021: 183-209. |
13 | NEUDECK P G, SPRY D J, CHEN L Y, et al. Demonstration of 4H-SiC digital integrated circuits above 800 ℃[J]. IEEE Electron Device Letters, 2017, 38(8): 1082-1085. |
14 | 牟恋希, 曾翰森, 朱肖华, 等. CVD人造金刚石核辐射探测器研究进展[J]. 人工晶体学报, 2022, 51(5): 814-829. |
MU L X, ZENG H S, ZHU X H, et al. Research progress of nuclear radiation detectors with CVD synthetic diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 814-829 (in Chinese). | |
15 | 李 正. 用于高温强辐射场的SiC中子探测器技术研究[D]. 绵阳: 中国工程物理研究院, 2019. |
LI Z. Research on SiC neutron detector technology for high temperature and strong radiation field[D]. Mianyang: China Academy of Engineering Physics, 2019 (in Chinese). | |
16 | SIMON R C, JAMES A S, MICHAEL E P. Physics in nuclear medicine: Chapter6 interaction of radiation with matter[M]. 2th ed. Amsterdam: Saunders, 2012: 63-85. |
17 | MANNAN M A. Defect characterization of 4H-SiC by deep level transient spectroscopy (DLTS) and influence of defects on device performance[D]. Columbia, SC, USA: University of South Carolina, 2015. |
18 | 赵 鑫, 王利斌, 席善学, 等. 金刚石核辐射探测器研究进展[J]. 防化研究, 2024(1): 8-17. |
ZHAO X, WANG L B, XI S X, et al. Research progress of diamond nuclear radiation detectors[J]. CBRN Defense, 2024(1): 8-17 (in Chinese). | |
19 | CRNJAC A, JAKŠIĆ M, MATIJEVIĆ M, et al. Energy loss of MeV protons in diamond: stopping power and mean ionization energy[J]. Diamond and Related Materials, 2023, 132: 109621. |
20 | 胡青青. 碳化硅中子探测器的研究[D]. 长沙: 国防科学技术大学, 2012. |
HU Q Q. Study on silicon carbide neutron detector[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
21 | WANG G B, SHENG D, YANG Y F, et al. High-quality and wafer-scale cubic silicon carbide single crystals[J]. Energy & Environmental Materials, 2024, 7(4): e12678. |
22 | HABERSTROH C, HELBIG R, STEIN R A. Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R)[J]. 1994, 76(1): 509-513. |
23 | 胡智臣. 第三代半导体SiC单晶生长用高纯SiC粉制备研究[D]. 南昌: 南昌大学, 2023. |
HU Z C. Study on preparation of high purity SiC powder for the growth of the third generation semiconductor SiC single crystal[D]. Nanchang: Nanchang University, 2023 (in Chinese). | |
24 | 王守国, 张 岩. SiC材料及器件的应用发展前景[J]. 自然杂志, 2011, 33(1): 42-45+53. |
WANG S G, ZHANG Y. Application and development of SiC materials and devices[J]. Chinese Journal of Nature, 2011, 33(1): 42-45+53 (in Chinese). | |
25 | 刘兴昉, 陈 宇. 碳化硅半导体技术及产业发展现状[J]. 新材料产业, 2015(10): 12-19. |
LIU X F, CHEN Y. Present situation of silicon carbide semiconductor technology and industry development[J]. Advanced Materials Industry, 2015(10): 12-19 (in Chinese). | |
26 | 罗 东. 4H-SiC掺杂结构的第一性原理计算及其导电型单晶衬底的研究[D]. 太原: 太原理工大学, 2022. |
LUO D. First-principles calculation of 4H-SiC doped structure and study on its conductive single crystal substrate[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese). | |
27 | 彭彩云, 王艳辉, 张 航, 等. 4H-SiC材料p型掺杂的电子结构第一性原理研究[J]. 伊犁师范学院学报(自然科学版), 2017, 11(1): 33-38. |
PENG C Y, WANG Y H, ZHANG H, et al. A first principle study on electronic structure of p-type doped 4H-SiC[J]. Journal of Yili Normal University (Natural Science Edition), 2017, 11(1): 33-38 (in Chinese). | |
28 | JIANG Z Y, XU X H, WU H S, et al. Ab initio calculation of SiC polytypes[J]. Solid State Communications, 2002, 123(6/7): 263-266. |
29 | KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications[M]. Singapore: John Wiley & Sons Singapore Pte.Ltd., 2014. |
30 | ZHAO S, GOHIL T, LIOLIOU G, et al. Soft X-ray detection and photon counting spectroscopy with commercial 4H-SiC Schottky photodiodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 830: 1-5. |
31 | BERTUCCIO G, CACCIA S, PUGLISI D, et al. Advances in silicon carbide X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 193-196. |
32 | TORRISI L, SCIUTO A, CANNAVÒ A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials, 2017, 46(7): 4242-4249. |
33 | AKIMOV Y K. Silicon radiation detectors (review)[J]. Instruments and Experimental Techniques, 2007, 50(1): 1001. |
34 | HIBINO K, KASHIWAGI T, OKUNO S, et al. The design of diamond Compton telescope[J]. Astrophysics and Space Science, 2007, 309(1): 541-544. |
35 | LIU L Y, OUYANG X, RUAN J L, et al. Performance comparison between SiC and Si neutron detectors in deuterium-tritium fusion neutron irradiation[J]. IEEE Transactions on Nuclear Science, 2019, 66(4): 737-741. |
36 | KRUCHONAK U, ABOU EL-AZM S, AFANACIEV K, et al. Radiation hardness of GaAs∶Cr and Si sensors irradiated by electron beam[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 975: 164204. |
37 | TANAKA T, KANEKO J, TAKEUCHI D, et al. Diamond radiation detector made of an ultrahigh-purity type IIa diamond crystal grown by high-pressure and high-temperature synthesis[J]. 2001, 72(2): 1406-1410. |
38 | PERNEGGER H. High mobility diamonds and particle detectors[J]. Physica Status Solidi (a), 2006, 203(13): 3299-3314. |
39 | DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal[J]. Crystal Growth & Design, 2016, 16(3): 1256-1260. |
40 | KORDINA O, HALLIN C, ELLISON A, et al. High temperature chemical vapor deposition of SiC[J]. Applied Physics Letters, 1996, 69(10): 1456-1458. |
41 | HOSHINO N, KAMATA I, TOKUDA Y, et al. Fast growth of n-type 4H-SiC bulk crystal by gas-source method[J]. Journal of Crystal Growth, 2017, 478: 9-16. |
42 | 杨祥龙, 徐现刚, 陈秀芳, 等. 宽禁带SiC单晶衬底研究进展[J]. 电力电子技术, 2017, 51(8): 12-16+23. |
YANG X L, XU X G, CHEN X F, et al. Recent development of wide bandgap semiconductor SiC substrates[J]. Power Electronics, 2017, 51(8): 12-16+23 (in Chinese). | |
43 | OHTANI N, FUJIMOTO T, KATSUNO M, et al. Growth of large high-quality SiC single crystals[J]. Journal of Crystal Growth, 2002, 237: 1180-1186. |
44 | LI H Q, CHEN X L, NI D Q, et al. An analysis of seed graphitization for sublimation growth of SiC bulk crystal[J]. Diamond and Related Materials, 2004, 13(1): 151-156. |
45 | 刘春俊. SiC单晶生长技术研究现状[J]. 中国照明电器, 2017(10): 18-21. |
LIU C J. Research status of SiC single crystal growth[J]. China Light & Lighting, 2017(10): 18-21 (in Chinese). | |
46 | HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals[J]. Materials Science and Engineering: B, 1999, 61: 29-39. |
47 | KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[J]. Materials Science Forum, 2013, 740/ 741/742: 65-68. |
48 | KUSUNOKI K, KAMEI K, OKADA N, et al. Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents[J]. Materials Science Forum, 2014, 778/ 779/780: 79-82. |
49 | KUSUNOKI K, SEKI K, KISHIDA Y, et al. Development of solvent inclusion free 4H-SiC off-axis wafer grown by the top-seeded solution growth technique[J]. Materials Science Forum, 2018, 924: 31-34. |
50 | KUSUNOKI K, KISHIDA Y, SEKI K. Solution growth of 4-inch diameter SiC single crystal using Si-Cr based solvent[J]. Materials Science Forum, 2019, 963: 85-88. |
51 | LIU B T, YU Y, TANG X, et al. Optimization of crucible and heating model for large-sized silicon carbide ingot growth in top-seeded solution growth[J]. Journal of Crystal Growth, 2020, 533: 125406. |
52 | TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550. |
53 |
KAWANISHI S, YOSHIKAWA T, SHIBATA H. Thermomigration of molten Cr-Si-C alloy in 4H-SiC at 1873-2273 K[J]. Journal of Crystal Growth, 2019, 518: 73-80.
DOI |
54 | ZHANG Z S, CHEN L, DENG J, et al. Intrinsic ferromagnetism in 4H-SiC single crystal induced by Al-doping[J]. Applied Physics A, 2020, 126(9): 729. |
55 | 胡继超. 4H-SiC低压同质外延生长和器件验证[D]. 西安: 西安电子科技大学, 2017. |
HU J C. Low pressure homoepitaxial growth and device verification of 4H-SiC[D]. Xi’an: Xidian University, 2017 (in Chinese). | |
56 | ELLISON A, MAGNUSSON B, HEMMINGSSON C, et al. HTCVD growth of semi-insulating 4H-SiC crystals with low defect density[J]. MRS Online Proceedings Library, 2011, 640(1): 12. |
57 | ELLISON A, ZHANG J, PETERSON J, et al. High temperature CVD growth of SiC[J]. Materials Science and Engineering: B, 1999, 61: 113-120. |
58 | MYERS R L, SHISHKIN Y, KORDINA O, et al. High growth rates (>30 μm/h) of 4H-SiC epitaxial layers using a horizontal hot-wall CVD reactor[J]. Journal of Crystal Growth, 2005, 285(4): 486-490. |
59 | KORDINA O, HALLIN C, HENRY A, et al. Growth of SiC by “hot-wall” CVD and HTCVD[J]. Physica Status Solidi (b), 1997, 202(1): 321-334. |
60 | CRIPPA D, VALENTE G L, RUGGIERO A, et al. New achievements on CVD based methods for SiC epitaxial growth[J]. Materials Science Forum, 2005, 483/ 484/485: 67-72. |
61 | VIA F L, GALVAGNO G, ROCCAFORTE F, et al. High growth rate process in a SiC horizontal CVD reactor using HCl[J]. Microelectronic Engineering, 2006, 83(1): 48-50. |
62 | LA VIA F, GALVAGNO G, FIRRINCIELI A, et al. Epitaxial layers grown with HCl addition: a comparison with the standard process[J]. Materials Science Forum, 2006, 527/ 528/529: 163-166. |
63 | LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515. |
64 | FUJIBAYASHI H, ITO M, ITO H, et al. Development of a 150 mm 4H-SiC epitaxial reactor with high-speed wafer rotation[J]. Applied Physics Express, 2014, 7(1): 015502. |
65 | ITO M, FUJIBAYASHI H, ITO H, et al. Simulation study of high-speed wafer rotation effects in a vertical reactor for 4H-SiC epitaxial growth on 150 mm substrates[J]. Materials Science Forum, 2014, 778/ 779/780: 171-174. |
66 | MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. |
67 | RUDDY F H, SEIDEL J G, CHEN H Q, et al. High-resolution alpha-particle spectrometry using 4H silicon carbide semiconductor detectors[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1713-1718. |
68 | MOSCATELLI F. Silicon carbide for UV, alpha, beta and X-ray detectors: results and perspectives[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 583(1): 157-161. |
69 | KALININA E V, IVANOV A M, STROKAN N B. Performance of p-n 4H-SiC film nuclear radiation detectors for operation at elevated temperatures (375 ℃)[J]. Technical Physics Letters, 2008, 34(3): 210-212. |
70 | CHAUDHURI S K, KRISHNA R M, ZAVALLA K J, et al. Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701: 214-220. |
71 | CHAUDHURI S K, ZAVALLA K J, MANDAL K C. High resolution alpha particle detection using 4H-SiC epitaxial layers: fabrication, characterization, and noise analysis[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 728: 97-101. |
72 | NGUYEN K V, CHAUDHURI S K, MANDAL K C. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers[C]// Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI. San Diego, California, USA. SPIE, 2014. |
73 | ZAŤKO B, DUBECKÝ F, ŠAGÁTOVÁ A, et al. High resolution alpha particle detectors based on 4H-SiC epitaxial layer[J]. Journal of Instrumentation, 2015, 10(4): C04009. |
74 | TORRISI L, FOTI G, GIUFFRIDA L, et al. Single crystal silicon carbide detector of emitted ions and soft X rays from power laser-generated plasmas[J]. 2009, 105(12): 123304. |
75 | ZAŤKO B, HRUBČÍN L, ŠAGÁTOVÁ A, et al. Study of the pulse height defect of 4H-SiC Schottky barrier detectors in heavy ion detection[C]// Applied Physics of Condensed Matter (Apcom 2021), PlesoŠtrbske, RepublicSlovak. AIP Publishing, 2021. |
76 | GÁL N, HRUBČÍN L, ANDREA Š, et al. High-resolution alpha-particle detector based on Schottky barrier 4H-SiC detector operated at elevated temperatures up to 500 ℃[J]. Applied Surface Science, 2023, 635: 157708. |
77 | MANDAL K C, CHAUDHURI S K, RUDDY F H. High-resolution alpha spectrometry using 4H-SiC detectors: a review of the state-of-the-art[J]. IEEE Transactions on Nuclear Science, 2023, 70(5): 823-830. |
78 | MANFREDOTTI C, GIUDICE A L, FASOLO F, et al. SiC detectors for neutron monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 552(1/2): 131-137. |
79 | GIUDICE ALO, FASOLO F, DURISI E, et al. Performances of 4H-SiC Schottky diodes as neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 583(1): 177-180. |
80 | KO G, KIM H Y, BANG J, et al. Electrical characterizations of neutron-irradiated SiC Schottky diodes[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 285-287. |
81 | HA J H, KANG S M, PARK S H, et al. A self-biased neutron detector based on an SiC semiconductor for a harsh environment[J]. Applied Radiation and Isotopes, 2009, 67(7/8): 1204-1207. |
82 | JANG HO H A, KANG S M, KIM H S, et al. 4H-SiC PIN-type semiconductor detector for fast neutron detection[J]. Progress in Nuclear Science and Technology, 2011, 1: 237-239. |
83 | 陈 雨, 蒋 勇, 吴 健, 等. SiC基中子探测器对热中子的响应[J]. 强激光与粒子束, 2013, 25(10): 2711. |
CHEN Y, JIANG Y, WU J, et al. Thermal neutron response of neutron detector based on SiC[J]. High Power Laser and Particle Beams, 2013, 25(10): 2711 (in Chinese). | |
84 | SZALKAI D, ISSA F, KLIX A, et al. First tests of silicon-carbide semiconductors as candidate neutron detector for the ITER Test Blanket Modules[C]// 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). June 23-27, 2013, Marseille, France. IEEE, 2013. |
85 | KANDLAKUNTA P, TAN C T, SMITH N, et al. Silicon carbide detectors for high flux neutron monitoring at near-core locations[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953: 163110. |
86 | COUTINHO J, TORRES V J B, CAPAN I, et al. Silicon carbide diodes for neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986: 164793. |
87 | BEDOGNI R, CALAMIDA A, CASTRO CAMPOY A I, et al. On neutron detection with silicon carbide and its resistance to large accumulated fluence[J]. The European Physical Journal Plus, 2022, 137(12): 1358. |
88 | BEDOGNI R, BORTOT D, POLA A, et al. Experimental characterization of semiconductor-based thermal neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 51-54. |
89 | ZHANG X P, SONG Z H, ZHANG J F, et al. Measurement of the neutron energy response curve of 4H-SiC detector based fission target detection system at the CSNS Back-n white neutron source[J]. Journal of Instrumentation, 2023, 18(9): P09038. |
90 | 张明强, 钟国强, 黄 娟, 等. 基于4H-SiC探测器多球谱仪的聚变中子能谱测量研究[J]. 核技术, 2024, 47(9): 79-86. |
ZHANG M Q, ZHONG G Q, HUANG J, et al. Research on fusion neutron energy spectrum measurement using a Bonner sphere spectrometer based on a 4H-SiC detector[J]. Nuclear Techniques, 2024, 47(9): 79-86 (in Chinese). | |
91 | PÉREZ M, ZAMORANO F, FLETA C, et al. Characterization of new silicon carbide neutron detectors with thermal and fast neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1069: 169968. |
92 | 张 林, 张义门, 张玉明, 等. 4H-SiC肖特基二极管γ射线探测器的模型与分析[J]. 强激光与粒子束, 2008, 20(5): 854-858. |
ZHANG L, ZHANG Y M, ZHANG Y M, et al. Model and analysis of 4H-SiC Schottky diode as γ-ray detector[J]. High Power Laser and Particle Beams, 2008, 20(5): 854-858 (in Chinese). | |
93 | BERTUCCIO G, CACCIA S, NAVA F, et al. Ultra low noise epitaxial 4H-SiC X-ray detectors[J]. Materials Science Forum, 2009, 615/ 616/617: 845-848. |
94 | BERTUCCIO G, PUGLISI D, PULLIA A, et al. X-γ ray spectroscopy with semi-insulating 4H-silicon carbide[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 1436-1441. |
95 | MANDAL K C, MUZYKOV P G, CHAUDHURI S K, et al. Low energy X-ray and γ-ray detectors fabricated on n-type 4H-SiC epitaxial layer[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2888-2893. |
96 | 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的γ射线探测器[J]. 物理学报, 2016, 65(20): 216-223. |
DU Y Y, ZHANG C L, CAO X L. γ-ray detector based on n-type 4H-SiC Schottky barrier diode[J]. Acta Physica Sinica, 2016, 65(20): 216-223 (in Chinese). | |
97 | ILIC S D, ANDJELKOVIC M S, CARVAJAL M A, et al. Power silicon carbide Schottky diodes as current mode γ-radiation detectors[C]// 2021 IEEE 32nd International Conference on Microelectronics (MIEL). September 12-14, 2021. Nis, Serbia. IEEE, 2021: 337-340. |
98 | SONG J L, TANG X B, GONG P, et al. Development of a silicon carbide radiation detection system and experimentation of the system performance[J]. Applied Radiation and Isotopes, 2024, 214: 111555. |
[1] | WANG Yuefei, GAO Chong, WU Zhe, LI Bingsheng, LIU Yichun. Study on the Epitaxial Growth of Gallium Oxide Heterostructure and UV Photodetector by Double Chamber Interconnected MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 426-437. |
[2] | XIE Guijiu, ZHANG Wenbin, WANG Yan, SONG Zhen, ZHANG Bing. Effect of SiC Wafer Grinding Process on Surface Damage [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 967-972. |
[3] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
[4] | SUN Xinghan, LI Jihu, ZHANG Wei, ZENG Qunfeng, ZHANG Junfeng. Research Progress on Material Removal Non-Uniformity in Silicon Carbide Chemical Mechanical Polishing [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 585-599. |
[5] | LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 181-193. |
[6] | GUO Yu, LIU Chunjun, ZHANG Xinhe, SHEN Pengyuan, ZHANG Bo, LOU Yanfang, PENG Tonghua, YANG Jian. Analysis and Review of Influencing Factors of SiC Homo-Epitaxial Wafers Quality [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 210-217. |
[7] | LI Yang, CAO Kun, JIE Wanqi. Effect of Thermal Treated GaSb Substrate for Epitaxial Growth of CdZnTe Film by Close-Spaced Sublimation Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1705-1711. |
[8] | HAN Jingrui, LI Xiguang, LI Yongmei, WANG Yaohao, ZHANG Qingchun, LI Da, SHI Jianxin, YAN Honglei, HAN Yuebin, TING Hungkit. Preparation and Epitaxy Application of 8 Inch SiC Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1712-1719. |
[9] | ZHANG Zeyu, WU Yufei, WANG Tao, ZHANG Jian, JIA Zhitai, TAO Xutang. Growth and Property of Sapphire Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1335-1344. |
[10] | CHEN Genqiang, ZHAO Xixiang, YU Zhongcheng, LI Zheng, WEI Qiang, LIN Fang, WANG Hongxing. Research Progress of Heteroepitaxial Single-Crystal Diamond and Related Electronic Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 931-944. |
[11] | SUI Zhanren, XU Lingbo, CUI Can, WANG Rong, YANG Deren, PI Xiaodong, HAN Xuefeng. Research Progress on Numerical Simulation of Single Crystal Silicon Carbide Prepared by Top-Seeded Solution Growth Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1067-1085. |
[12] | YIN Xinyan, CHEN Peng, LIANG Zitong, ZHAO Hong. Epitaxial Growth and Optical Properties of InN film by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 791-797. |
[13] | WANG Gaokai, ZHANG Xingwang. Research Progress of Epitaxial Growth of Hexagonal Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 825-841. |
[14] | LIU Huan, SHAO Pengfei, CHEN Songlin, ZHOU Hui, LI Siqi, TAO Tao, XIE Zili, LIU Bin, CHEN Dunjun, ZHENG Youdou, ZHANG Rong, WANG Ke. AlN Films Fabricated by Molecular Beam Epitaxy with Metal Modulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 878-885. |
[15] | BAI Ling, NING Jing, ZHANG Jincheng, WANG Dong, WANG Boyu, WU Haidi, ZHAO Jianglin, TAO Ran, LI Zhonghui. Van der Waals Epitaxial GaN Thin Films on Polycrystalline Diamond Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 901-908. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||