1 |
林明献. 矽晶圆半导体材料技术[M]. 5版. 全华图书股份有限公司, 2020.
|
|
LIN M X. Silicon wafer semiconductor[M]. 5th ed. Chuan Hwa Book Co., Ltd., 2020 (in Chinese).
|
2 |
胡 波. 单晶硅中氧和碳的分布及控制方法[D]. 湘潭: 湖南科技大学, 2009.
|
|
HU B. Distribution and control method of oxygen and carbon in monocrystalline silicon[D]. Xiangtan: Hunan University of Science and Technology, 2009 (in Chinese).
|
3 |
任丙彦, 赵 龙, 傅洪波, 等. 复合式热屏对Φ200 mm CZSi单晶生长速率和氧含量的影响[J]. 半导体学报, 2005, 26(9): 1764-1767.
|
|
REN B Y, ZHAO L, FU H B, et al. Effects of a heat shield on pull speed and oxygen concentration in a Φ200 mm CZSi[J]. Chinese Journal of Semiconductors, 2005, 26(9): 1764-1767 (in Chinese).
|
4 |
滕 冉, 戴小林, 徐文婷, 等. 热屏优化对大直径单晶硅生长影响的数值模拟[J]. 人工晶体学报, 2012, 41(1): 238-242+252.
|
|
TENG R, DAI X L, XU W T, et al. Numerical simulation on effect of heat-shield optimization on the growth of large-diameter silicon single crystal[J]. Journal of Synthetic Crystals, 2012, 41(1): 238-242+252 (in Chinese).
|
5 |
王新强, 景华玉, 王小亮, 等. 隔热环的位置对直拉单晶硅氧含量的影响[J]. 新技术新工艺, 2024(1): 73-76.
|
|
WANG X Q, JING H Y, WANG X L, et al. Effects of the position of insulation rings on oxygen contents of Czochralski single crystals[J]. New Technology & New Process, 2024(1): 73-76 (in Chinese).
|
6 |
高农农, 葛 林. 加热器直径对200mm太阳能级单晶硅加热效率、能耗和氧含量的影响[J]. 硅酸盐通报, 2015, 34(12): 3658-3662.
|
|
GAO N N, GE L. Influence of heater diameter on heating efficiency, power consumption and oxygen concentration in the solar-grade single silicon[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12): 3658-3662 (in Chinese).
|
7 |
TENG Y Y, CHEN J C, HUANG C C, et al. Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal-melt interface during the process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2012, 352(1): 167-172.
|
8 |
NGUYEN T P, HSIEH Y T, CHEN J C, et al. Effect of crucible and crystal rotations on the convexity and the thermal stress in large size sapphire crystals during Czochralski growth[J]. Journal of Crystal Growth, 2017, 468: 514-525.
|
9 |
DAI W X, CHENG G G, ZHANG G L, et al. Investigation of circulation flow and slag-metal behavior in an industrial single snorkel refining furnace (SSRF): application to desulfurization[J]. Metallurgical and Materials Transactions B, 2020, 51(2): 611-627.
|
10 |
ZHU K Q, YU P P, YUAN N Y, et al. Transient heat transfer characteristics of array-jet impingement on high-temperature flat plate at low jet-to-plate distances[J]. International Journal of Heat and Mass Transfer, 2018, 127: 413-425.
|
11 |
NAEENI S K, PAKZAD L. Droplet size distribution and mixing hydrodynamics in a liquid-liquid stirred tank by CFD modeling[J]. International Journal of Multiphase Flow, 2019, 120: 103100.
|
12 |
柯彬彬. 圆管外石蜡相变传热过程数值模拟及传热强化[D]. 镇江: 江苏大学, 2016.
|
|
KE B B. Numerical simulation and heat transfer enhancement of paraffin phase change heat transfer process at outer tube[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese).
|
13 |
LE T N, LO Y L, LIN Z H. Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy[J]. Additive Manufacturing, 2020, 36: 101519.
|
14 |
KESHTELI A N, SHEIKHOLESLAMI M. Influence of Al2O3 nanoparticle and Y-shaped fins on melting and solidification of paraffin[J]. Journal of Molecular Liquids, 2020, 314: 113798.
|
15 |
HEIDARI A. CFD simulation of impeller shape effect on quality of mixing in two-phase gas-liquid agitated vessel[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2733-2745.
|
16 |
HOSEINI S S, NAJAFI G, GHOBADIAN B, et al. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses[J]. Chemical Engineering Journal, 2021, 413: 127497.
|
17 |
MOUSAVI S E, CHOUDHURY M R, RAHAMAN M S. 3-D CFD-PBM coupled modeling and experimental investigation of struvite precipitation in a batch stirred reactor[J]. Chemical Engineering Journal, 2019, 361: 690-702.
|
18 |
DAI W X, CHENG G G, LI S J, et al. Numerical simulation of multiphase flow and mixing behavior in an industrial single snorkel refining furnace: effect of bubble expansion and snorkel immersion depth[J]. ISIJ International, 2019, 59(12): 2228-2238.
|