[1] LI Z X, SMIRNOV A. Application of computer modeling to pulling rate and productivity of Czochralski pullers in PV Si crystal growth[J]. Journal of Crystal Growth, 2023, 611: 127178.
[2] BORISOV D V, KALAEV V V. ILES of melt turbulent convection with conjugated heat transfer in the crucible and gas flow for Czochralski silicon crystal growth system[J]. Journal of Crystal Growth, 2021, 573: 126305
[3] WANG Z X, REN Y S, MA W H, et al. Crystal surface heat transfer during the growth of 300 mm monocrystalline silicon by the Czochralski process[J]. International Journal of Heat and Mass Transfer, 2025, 236: 126259.
[4] LI Y, GAO M M, LI J, et al. Effect of gas flow rate on chemical reactions in Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2018, 504: 56-61.
[5] MACHIDA N, HOSHIKAWA K, SHIMIZU Y. The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski silicon single crystals grown in a transverse magnetic field[J]. Journal of Crystal Growth, 2000, 210(4): 532-540.
[6] 高 宇, 朱 亮, 张 俊, 等. 定拉速生长对ϕ300 mm直拉硅单晶生长影响分析[J]. 人工晶体学报, 2020, 49(5): 811-814+823. GAO Y, ZHU L, ZHANG J, et al. Analysis of ϕ300 mm CZ silicon single crystal growth with constant growth rate[J]. Journal of Synthetic Crystals, 2020, 49(5): 811-814+823 (in Chinese).
[7] JEON H J, PARK H, KOYYADA G, et al. Optimal cooling system design for increasing the crystal growth rate of single-crystal silicon ingots in the Czochralski process using the crystal growth simulation[J]. Processes, 2020, 8(9): 1077.
[8] 徐尊豪, 李 进, 何 显, 等. 高拉速对ϕ300 mm单晶硅点缺陷分布及生产能耗的影响[J]. 人工晶体学报, 2023, 52(4): 562-570. XU Z H, LI J, HE X, et al. Effect of high pulling rate on the distribution of point defects and energy consumption in ϕ300 mm monocrystalline silicon[J]. Journal of Synthetic Crystals, 2023, 52(4): 562-570 (in Chinese).
[9] LOU Z S, XUE Z X, YUAN S, et al. Effects of horizontal magnetic field position on oxygen control in 12-inch Czochralski silicon[J]. Journal of Crystal Growth, 2024, 646: 127861.
[10] NOGHABI O A, JOMÂA M, M'HAMDI M. Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2013, 362: 77-82.
[11] PÄTZOLD O, DADZIS K, KIRMSE C, et al. Model experiments for melt flow in Czochralski growth of silicon[J]. Journal of Crystal Growth, 2022, 588: 126656.
[12] ASADI NOGHABI O, M'HAMDI M, JOMÂA M. Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals[J]. Journal of Crystal Growth, 2011, 318(1): 173-177.
[13] SABANSKIS A, PLĀTE M, SATTLER A, et al. Evaluation of the performance of published point defect parameter sets in cone and body phase of a 300 mm Czochralski silicon crystal[J]. Crystals, 2021, 11(5): 460.
[14] LIU X, HARADA H, MIYAMURA Y, et al. Transient global modeling for the pulling process of Czochralski silicon crystal growth. II. Investigation on segregation of oxygen and carbon[J]. Journal of Crystal Growth, 2020, 532: 125404.
[15] LIU Y Y, LIU D, SONG Z Z. Simulation study on control characteristics of semiconductor grade monocrystalline silicon growth process[C]//2022 China Automation Congress (CAC). November 25-27, 2022, Xiamen, China. IEEE, 2022: 5075-5080.
[16] 张 晶, 刘 丁. ϕ300 mm 直拉硅单晶生长过程中的变晶现象及其影响因素[J]. 人工晶体学报, 2022, 51(7): 1185-1193.
ZHANG J, LIU D. Transformation phenomena and influencing factors in the growth process of ϕ300 mm Czochralski silicon single crystal[J]. Journal of Synthetic Crystals, 2022, 51(7): 1185-1193 (in Chinese).
[17] GUSEV A O, MAZHOROVA O S. Quasi-steady-state numerical simulation of Czochralski single crystal growth[J]. Keldysh Institute Preprints, 2023(59): 1-20.
[18] MUKAIYAMA Y, SUEOKA K, MAEDA S, et al. Numerical analysis of effect of thermal stress depending on pulling rate on behavior of intrinsic point defects in large-diameter Si crystal grown by Czochralski method[J]. Journal of Crystal Growth, 2020, 531: 125334.
[19] KUTSUKAKE K, NAGAI Y, BANBA H. Virtual experiments of Czochralski growth of silicon using machine learning: influence of processing parameters on interstitial oxygen concentration[J]. Journal of Crystal Growth, 2022, 584: 126580.
[20] SU J Y, ZHANG X Y, LI X, et al. Synthesis and luminescence properties of Yb3+, Tm3+ and Ho3+ co-doped SrGd2(WO4)2(MoO4)2 nano-crystal[J]. Advanced Powder Technology, 2020, 31(3): 1051-1059.
[21] DJEUMEGNI J, LAZARD M, DEZ V, et al. Modeling of radiative heat transfer in a gray semi-transparent medium with internal fluid cavity limited by black boundary surfaces[J]. Tecnica Italiana-Italian Journal of Engineering Science, 2019, 63(2/3/4): 205-210.
[22] MCMULLEN R M, KRYGIER M C, TORCZYNSKI J R, et al. Navier-stokes equations do not describe the smallest scales of turbulence in gases[J]. Physical Review Letters, 2022, 128(11): 114501.
[23] MORI A, SATO M, SUZUKI Y. Effect of density change at crystallization on a one-dimensional heat balance equation at solid-liquid interface[J]. Japanese Journal of Applied Physics, 2019, 58(4): 045506.
[24] PENG J Z, LIU X L, AUBRY N, et al. Data-driven modeling of geometry-adaptive steady heat transfer based on convolutional neural networks: heat conduction[EB/OL]. 2020: 2010.03854[2024-06-30]. https://arxiv.org/abs/2010.03854v1.
[25] WU H H, GAO D D, WANG S, et al. Design of follow-up superconducting Cusp magnetic field and system performance analysis of Czochralski single crystal furnace[J]. Results in Physics, 2023, 53: 106958.
[26] SUEZAWA M, YONENAGA I. Modification of the critical v/G of the Voronkov's theory on the grown-in defects in Si crystals[J]. Japanese Journal of Applied Physics, 2020, 59(9): 098001.
[27] MUKAIYAMA Y, SUEOKA K, MAEDA S, et al. Unsteady numerical simulations considering effects of thermal stress and heavy doping on the behavior of intrinsic point defects in large-diameter Si crystal growing by Czochralski method[J]. Journal of Crystal Growth, 2020, 532: 125433. |