| 1 |
ZHANG K N, SHE Y H, CAI X B, et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides[J]. Nature Nanotechnology, 2023, 18(5): 448-455.
DOI
PMID
|
| 2 |
ZHONG J X, ZHOU D W, BAI Q, et al. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces[J]. Nature Communications, 2024, 15(1): 3185.
DOI
PMID
|
| 3 |
XIAO H, LIANG T, XU M S. Growth of ultraflat PbI2 nanoflakes by solvent evaporation suppression for high-performance UV photodetectors[J]. Small, 2019, 15(33): 1901767.
|
| 4 |
SUN Y, YIN Y, POLS M, et al. Engineering the phases and heterostructures of ultrathin hybrid perovskite nanosheets[J]. Advanced Materials, 2020, 32(34): 2002392.
|
| 5 |
HSUEH H C, CHEN R K, VASS H, et al. Compression mechanisms in quasimolecular XI3 (X=As, Sb, Bi) solids[J]. Physical Review B, 1998, 58(22): 14812-14822.
|
| 6 |
KĘPIŃSKA M, NOWAK M, DUKA P, et al. Optical properties of SbI3 single crystalline platelets[J]. Optical Materials, 2011, 33(11): 1753-1759.
|
| 7 |
KĘPIŃSKA M, STARCZEWSKA A, BEDNARCZYK I, et al. Fabrication and characterisation of SbI3-opal structures[J]. Materials Letters, 2014, 130: 17-20.
|
| 8 |
MADY K A, EID A H, SOLIMAN W Z. Electrical conductivity of antimony triiodide single crystals[J]. Journal of Materials Science Letters, 1987, 6(3): 251-253.
|
| 9 |
BHARATHI MOHAN D, PHILIP A, SUNANDANA C S. Iodization of antimony thin films: XRD, SEM and optical studies of nanostructured SbI3 [J]. Vacuum, 2008, 82(6): 561-565.
|
| 10 |
ONODERA T, BABA K, HITOMI K. Evaluation of antimony tri-iodide crystals for radiation detectors[J]. Science and Technology of Nuclear Installations, 2018, 2018(1): 1532742.
|
| 11 |
SUN X X, LI C, HOU Q Y, et al. Phase transition and electronic properties of SbI3: first-principles calculations[J]. Modern Physics Letters B, 2017, 31(18): 1750200.
|
| 12 |
XING S Y, CHEN S X, FANG S X, et al. Pressure-regulated photovoltaic response in antimony triiodide with asymmetric metal contact[J]. Advanced Optical Materials, 2024, 12(31): 2401433.
|
| 13 |
LIU W W, ZHANG T, ZHAO B H, et al. Facilitating the carrier transport kinetics at the CsPbBr3/carbon interface through SbX3 (X = Cl, Br, I) passivation[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 57362-57370.
|
| 14 |
CHAHKAMALI F O, FAGHIHI M R, MAGHSOODLOU M T. Introduction of antimony triiodide (SbI3) as a new and efficient catalyst for synthesis of polyfunctionalized piperidines[J]. Research on Chemical Intermediates, 2016, 42(12): 8109-8117.
|
| 15 |
RAMACHANDRAN A A, KRISHNAN B, DEVASIA S, et al. Photosensitive antimony triiodide thin films by rapid iodization of chemically deposited antimony sulfide[J]. Materials Research Bulletin, 2021, 142: 111382.
|
| 16 |
TANG J, GE F X, CHEN J L, et al. A droplet method for synthesis of multiclass ultrathin metal halides[J]. Small, 2023, 19(43): 2301573.
|
| 17 |
XUE B F, FU Z W, LI H, et al. Cheap and environmentally benign electrochemical energy storage and conversion devices based on AlI3 electrolytes[J]. Journal of the American Chemical Society, 2006, 128(27): 8720-8721.
|