| [1] |
BLASSE G. Scintillator materials[J]. Chemistry of Materials, 1994, 6(9): 1465-1475.
|
| [2] |
SPAHN M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 731: 57-63.
|
| [3] |
HAFF R P, TOYOFUKU N. X-ray detection of defects and contaminants in the food industry[J]. Sensing and Instrumentation for Food Quality and Safety, 2008, 2(4): 262-273.
|
| [4] |
SAKDINAWAT A, ATTWOOD D. Nanoscale X-ray imaging[J]. Nature Photonics, 2010, 4(12): 840-848.
|
| [5] |
DUAN X H, CHENG J P, ZHANG L, et al. X-ray cargo container inspection system with few-view projection imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598(2): 439-444.
|
| [6] |
LI Z Z, ZHOU F G, YAO H H, et al. Halide perovskites for high-performance X-ray detector[J]. Materials Today, 2021, 48: 155-175.
|
| [7] |
ZHANG Y X, LIU Y C, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection[J]. Nature Communications, 2020, 11(1): 2304.
|
| [8] |
KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91.
|
| [9] |
HEO J H, SHIN D H, PARK J K, et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Advanced Materials, 2018, 30(40): 1801743.
|
| [10] |
董思吟, 帖舒婕, 袁瑞涵, 等. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030.
|
|
DONG S Y, TIE S J, YUAN R H, et al. Research progress on low-dimensional halide perovskite direct X-ray detectors[J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030 (in Chinese).
|
| [11] |
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes[J]. Nature Nanotechnology, 2016, 11(10): 872-877.
|
| [12] |
QUINTERO-BERMUDEZ R, GOLD-PARKER A, PROPPE A H, et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality[J]. Nature Materials, 2018, 17(10): 900-907.
|
| [13] |
TSAI H, LIU F Z, SHRESTHA S, et al. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes[J]. Science Advances, 2020, 6(15): eaay0815.
|
| [14] |
QUAN L N, YUAN M J, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 2016, 138(8): 2649-2655.
|
| [15] |
TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016, 536(7616): 312-316.
|
| [16] |
TSAI H, ASADPOUR R, BLANCON J C, et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells[J]. Nature Communications, 2018, 9: 2130.
|
| [17] |
HAN Y, PARK S, KIM C, et al. Phase control of quasi-2D perovskites and improved light-emitting performance by excess organic cations and nanoparticle intercalation[J]. Nanoscale, 2019, 11(8): 3546-3556.
|
| [18] |
HE T W, LI S S, JIANG Y Z, et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape[J]. Nature Communications, 2020, 11(1): 1672.
|
| [19] |
WANG Y K, MA D X, YUAN F L, et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters[J]. Nature Communications, 2020, 11: 3674.
|
| [20] |
ZHOU M, FEI C B, SARMIENTO J S, et al. Manipulating the phase distributions and carrier transfers in hybrid quasi-two-dimensional perovskite films[J]. Solar RRL, 2019, 3(4): 1800359.
|
| [21] |
SIDHIK S, LI W B, SAMANI M H K, et al. Memory seeds enable high structural phase purity in 2D perovskite films for high-efficiency devices[J]. Advanced Materials, 2021, 33(29): 2007176.
|
| [22] |
LIU Y L, GAO C S, LI D, et al. Dynamic X-ray imaging with screen-printed perovskite CMOS array[J]. Nature Communications, 2024, 15(1): 1588.
|
| [23] |
KASAP S, FREY J B, BELEV G, et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes[J]. Physica Status Solidi (b), 2009, 246(8): 1794-1805.
|
| [24] |
ZENTAI G, PARTAIN L D, PAVLYUCHKOVA R, et al. Mercuric iodide and lead iodide X-ray detectors for radiographic and fluoroscopic medical imaging[C]//Medical Imaging 2003: Physics of Medical Imaging. San Diego, CA. SPIE, 2003: 77.
|
| [25] |
DVORYANKIN V F, DVORYANKINA G G, KUDRYASHOV A A, et al. X-ray sensitivity of Cd0.9Zn0.1Te detectors[J]. Technical Physics, 2010, 55(2): 306-308.
|
| [26] |
XIN D Y, ZHANG M, FAN Z H, et al. Low-dose and stable X-ray imaging enabled by low-dimensional dion-jacobson perovskites[J]. Advanced Functional Materials, 2024, 34(38): 2402480.
|
| [27] |
LU X J, XIN D Y, LEI L, et al. High-performance flat-panel perovskite X-ray detectors enabled by defect passivation in ruddlesden-popper perovskites[J]. ACS Applied Materials & Interfaces, 2024, 16(11): 14006-14014.
|
| [28] |
SHEARER D R, BOPAIAH M. Dose rate limitations of integrating survey meters for diagnostic X-ray surveys[J]. Health Physics, 2000, 79(2 ): S20-S21.
|