Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (6): 912-923.DOI: 10.16553/j.cnki.issn1000-985x.2025.0024
• Reviews • Previous Articles Next Articles
WU Xiao(), ZHAO Wen, QI Wenbin, SONG Linwei, LI Xiangkun, JIANG Jun, KONG Jincheng, WANG Shanli(
)
Received:
2025-02-11
Online:
2025-06-20
Published:
2025-06-23
CLC Number:
WU Xiao, ZHAO Wen, QI Wenbin, SONG Linwei, LI Xiangkun, JIANG Jun, KONG Jincheng, WANG Shanli. Research Progress on Thermal Annealing Technologies of CZT Crystals[J]. Journal of Synthetic Crystals, 2025, 54(6): 912-923.
Fig.1 T-x phase diagram of CdTe[17] and typical secondary phase image[29]. (a) T-x phase diagram of CdTe[17]; (b) typical Te secondary phase[29]; (c) typical Cd secondary phase[29]
Fig.2 Effect of isothermal annealing on CZT crystals. (a)~(d) Comparison of infrared transmission imaging of CZT wafer before and after isothermal annealing (wafer/Te source temperature is 500/450 ℃, (b), (c), (d) annealing time is 60, 120, 240 h respectively)[45]; (e) low temperature fluorescence change of CZT wafer with annealing temperature[51]
Fig.3 Effect of gradient annealing on CZT crystals. (a) “Thermal migration” of Te secondary phase under temperature gradient (700 ℃ annealing for 10 h with a temperature gradient of 45 ℃/cm); (b) voids inside the Te secondary phase of pristine wafer[58];(c) voids inside the Te secondary phase after annealing (Cd source annealing at 700 ℃ for 10 min)[58]
Fig.4 Effect of step annealing on CZT crystals. Infrared transmission imaging of Te secondary phase before (a) and after (b) step annealing. The first annealing condition is Cd atmosphere, the wafer/source temperature is 700/600 ℃, 24 h, and the second annealing condition is Te atmosphere, the wafer/source temperature is 540/380 ℃, 120 h)[63]; (c) I-V curves of the pristine wafer, the crystal after the first annealing (Cd annealing), and the crystal after the second annealing (Te annealing)[63]
In-situ annealing at different cool down rates | |||||
---|---|---|---|---|---|
Cool down rate/(℃·h-1) | Mean diameter of SP/μm | Volume ratio of SP/% | R/(Ω·cm) | μτ/(cm2·V-1) | |
7 | 3.50 | 9.0×10-3 | 1.69×1010 | 1.000×10-3 | |
14 | 2.95 | 1.8×10-3 | 1.80×1010 | 2.300×10-3 | |
20 | 2.57 | 5.0×10-3 | 1.00×1010 | 1.720×10-3 | |
272 | Edge | 2.00 | 0.4×10-3 | — | 10.800×10-3 |
Center | 3.69 | 4.0×10-3 | 2.00×1010 | 1.260×10-3 | |
Temperature gradient in-situ annealing (temperatures of hot/cold side = 850/750 ℃) | |||||
Hot side | 7.88 | 10.5×10-3 | 2.10×1010 | 0.752×10-3 | |
Cold side | 7.91 | 7.0×10-3 | 2.63×1010 | 0.606×10-3 |
Table 1 Effects of different in-situ annealing conditions on CZT secondary phase SP, resistivity R, and carrier mobility-lifetime product μτ
In-situ annealing at different cool down rates | |||||
---|---|---|---|---|---|
Cool down rate/(℃·h-1) | Mean diameter of SP/μm | Volume ratio of SP/% | R/(Ω·cm) | μτ/(cm2·V-1) | |
7 | 3.50 | 9.0×10-3 | 1.69×1010 | 1.000×10-3 | |
14 | 2.95 | 1.8×10-3 | 1.80×1010 | 2.300×10-3 | |
20 | 2.57 | 5.0×10-3 | 1.00×1010 | 1.720×10-3 | |
272 | Edge | 2.00 | 0.4×10-3 | — | 10.800×10-3 |
Center | 3.69 | 4.0×10-3 | 2.00×1010 | 1.260×10-3 | |
Temperature gradient in-situ annealing (temperatures of hot/cold side = 850/750 ℃) | |||||
Hot side | 7.88 | 10.5×10-3 | 2.10×1010 | 0.752×10-3 | |
Cold side | 7.91 | 7.0×10-3 | 2.63×1010 | 0.606×10-3 |
Fig.6 Effect of in-situ annealing on CZT crystals. Infrared transmission imaging of the secondary phase before (a) and after (b) in-situ annealing[29]; EPD imaging before (c) and after (d) in-situ annealing[29]; in-situ annealing conditions: Cd atmosphere, 750 °C, 168 h
Fig.7 Effect of solution annealing on CZT crystals[71]. (a) SEM image of the crystal surface after vapor phase annealing; (b) SEM image of the crystal surface after solution annealing[71]; (c) changes in resistivity with different solution annealing time[71]
退火技术 | 主要目的 | 优点 | 缺点 | 特殊条件 | 典型效果 | 适用场景 |
---|---|---|---|---|---|---|
恒温 退火 | 去除沉积相,改善晶体质量 | 可完全去除Cd沉积相;改善近表面晶体结构 | Te沉积相难以完全消除;高温可能增加位错密度 | 退火源选择取决于晶片状态(例如,Te气氛,片/源温度500/500 ℃,120 h[ | Cd沉积相被完全消除;电阻率提升至1011 Ω·cm量级;红外透过率增加至60%以上[ | 富Cd晶片;需要改善表面结构 |
梯度 退火 | 清除Te沉积相 | Te沉积相消除效率高(70%~90%) | 显著降低电阻率;可能增加某些尺寸沉积相密度 | 需在晶体径向方向构建温度梯度(例如,Cd/Zn气氛,片/源温度(740~750)/627 ℃,温度梯度8 ℃/cm,120 h[ | Te沉积相消除效率大于90%[ | 富Te晶片;Te沉积相严重 |
分步 退火 | 减少Te沉积相并恢复高电阻率 | 可恢复高电阻率;可能降低位错/层错 | 可能增加深能级缺陷;难以精确控制点缺陷浓度 | 先Cd气氛退火,后Te气氛退火(例如,Cd气氛,片/源温度700/600 ℃,24 h一次退火 + Te气氛,540/380 ℃, 120 h二次退火[ | Te沉积相完全消除,且电阻率恢复至1010 Ω·cm量级[ | 需要同时控制沉积相和电阻率 |
器件 退火 | 降低漏电流 | 降低表面漏电流 | 高温可能导致体漏电流增加;可能改变界面特性 | 温度通常<470 ℃;空气退火效果更好(例如,空气氛围,120 ℃,40 min[ | 促进形成均匀致密表面氧化钝化层,表面漏电流降低96%[ | 器件制备后期;需要优化表面特性 |
原位 退火 | 缩短工艺时间,减少表面损伤 | 减少表面损伤导致的位错增殖;工艺时间短 | 需精确控制退火参数 | 在生长炉中直接进行(例如,Cd气氛,950 ℃,60 h[ | Te沉积相密度从500 cm-2降低至最小77 cm-2;位错密度无明显增殖;重复性高[ | 晶体生长后直接处理;需要快速优化 |
溶液 退火 | 改善内部点缺陷密度和表面形态 | 过程温和;改善表面平滑度;引入深能级缺陷 | 技术较新,需要进一步研究 | 使用CdCl2溶液作退火介质(例如,CdCl2溶液,80 ℃, 30 h[ | 红外透过率提高至大于60%;电阻率增加至1010 Ω·cm量级;表面损伤相较气相退火明显降低[ | 需要温和处理;关注表面形态改善 |
Table 2 Comparison of key features of various annealing techniques
退火技术 | 主要目的 | 优点 | 缺点 | 特殊条件 | 典型效果 | 适用场景 |
---|---|---|---|---|---|---|
恒温 退火 | 去除沉积相,改善晶体质量 | 可完全去除Cd沉积相;改善近表面晶体结构 | Te沉积相难以完全消除;高温可能增加位错密度 | 退火源选择取决于晶片状态(例如,Te气氛,片/源温度500/500 ℃,120 h[ | Cd沉积相被完全消除;电阻率提升至1011 Ω·cm量级;红外透过率增加至60%以上[ | 富Cd晶片;需要改善表面结构 |
梯度 退火 | 清除Te沉积相 | Te沉积相消除效率高(70%~90%) | 显著降低电阻率;可能增加某些尺寸沉积相密度 | 需在晶体径向方向构建温度梯度(例如,Cd/Zn气氛,片/源温度(740~750)/627 ℃,温度梯度8 ℃/cm,120 h[ | Te沉积相消除效率大于90%[ | 富Te晶片;Te沉积相严重 |
分步 退火 | 减少Te沉积相并恢复高电阻率 | 可恢复高电阻率;可能降低位错/层错 | 可能增加深能级缺陷;难以精确控制点缺陷浓度 | 先Cd气氛退火,后Te气氛退火(例如,Cd气氛,片/源温度700/600 ℃,24 h一次退火 + Te气氛,540/380 ℃, 120 h二次退火[ | Te沉积相完全消除,且电阻率恢复至1010 Ω·cm量级[ | 需要同时控制沉积相和电阻率 |
器件 退火 | 降低漏电流 | 降低表面漏电流 | 高温可能导致体漏电流增加;可能改变界面特性 | 温度通常<470 ℃;空气退火效果更好(例如,空气氛围,120 ℃,40 min[ | 促进形成均匀致密表面氧化钝化层,表面漏电流降低96%[ | 器件制备后期;需要优化表面特性 |
原位 退火 | 缩短工艺时间,减少表面损伤 | 减少表面损伤导致的位错增殖;工艺时间短 | 需精确控制退火参数 | 在生长炉中直接进行(例如,Cd气氛,950 ℃,60 h[ | Te沉积相密度从500 cm-2降低至最小77 cm-2;位错密度无明显增殖;重复性高[ | 晶体生长后直接处理;需要快速优化 |
溶液 退火 | 改善内部点缺陷密度和表面形态 | 过程温和;改善表面平滑度;引入深能级缺陷 | 技术较新,需要进一步研究 | 使用CdCl2溶液作退火介质(例如,CdCl2溶液,80 ℃, 30 h[ | 红外透过率提高至大于60%;电阻率增加至1010 Ω·cm量级;表面损伤相较气相退火明显降低[ | 需要温和处理;关注表面形态改善 |
1 | OWENS A. Semiconductor materials and radiation detection[J]. Journal of Synchrotron Radiation, 2006, 13(2): 143-150. |
2 | INIEWSKI K. CZT detector technology for medical imaging[J]. Journal of Instrumentation, 2014, 9(11): 11001. |
3 | ALAM M D, NASIM S S, HASAN S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring[J]. Progress in Nuclear Energy, 2021, 140: 103918. |
4 | TSYBRII Z, BEZSMOLNYY Y, SVEZHENTSOVA K, et al. HgCdTe/CdZnTe LPE epitaxial layers: from material growth to applications in devices[J]. Journal of Crystal Growth, 2020, 529: 125295. |
5 | 黄 哲, 伍思远, 陈柏杉, 等. 探测器级碲锌镉晶体生长及缺陷研究进展[J]. 中国有色金属学报, 2022, 32(8): 2327-2344. |
HUANG Z, WU S Y, CHEN B S, et al. Research progress on CdZnTe crystals growth and defects for radiation detection applications[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2327-2344 (in Chinese). | |
6 | GUL R, ROY U N, EGARIEVWE S U, et al. Point defects: their influence on electron trapping, resistivity, and electron mobility-lifetime product in CdTe x Se1- x detectors[J]. Journal of Applied Physics, 2016, 119(2): 025702. |
7 | WEI S H, ZHANG S B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe[J]. Physical Review B, 2002, 66(15): 155211. |
8 | 杨 帆, 王 涛, 周伯儒, 等. 室温核辐射探测器用碲锌镉晶体生长研究进展[J]. 人工晶体学报, 2020, 49(4): 561-569. |
YANG F, WANG T, ZHOU B R, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561-569 (in Chinese). | |
9 | YANG J, KONG J C, QIN G, et al. Impact of precipitates in CdZnTe substrates on defects of HgCdTe film grown by molecular beam epitaxy[C]// 2021 International Conference on Optical Instruments and Technology: IRMMW-THz Technologies and Applications. April 8-10, 2022. Online Only, China. SPIE, 2022: 122840. |
10 | SHENG F F, ZHOU C H, SUN S W, et al. Influences of Te-rich and Cd-rich precipitates of CdZnTe substrates on the surface defects of HgCdTe liquid-phase epitaxy materials[J]. Journal of Electronic Materials, 2014, 43(5): 1397-1402. |
11 | PARODOS T, FITZGERALD E A, CASTER A, et al. Effect of dislocations on VLWIR HgCdTe photodiodes[J]. Journal of Electronic Materials, 2007, 36(8): 1068-1076. |
12 | LAMARRE P, FULK C, D’ORSOGNA D, et al. Characterization of dislocations in HgCdTe heteroepitaxial layers using a new substrate removal technique[J]. Journal of Electronic Materials, 2009, 38(8): 1746-1754. |
13 | 何亦辉. CdZnTe晶体的缺陷研究及退火处理[D]. 西安: 西北工业大学, 2014. |
HE Y H. Study on defects and annealing treatment of CdZnTe crystals[D]. Xi’an: Northwestern Polytechnical University, 2014 (in Chinese). | |
14 | 陈永仁, 赵 鹏, 俞鹏飞, 等. 室温辐射探测器用碲锌镉晶体的退火改性研究进展[J]. 材料科学与工程学报, 2021, 39(2): 342-354. |
CHEN Y R, ZHAO P, YU P F, et al. Research progress on annealing of CdZnTe crystals used for room temperature radiation detectors[J]. Journal of Materials Science and Engineering, 2021, 39(2): 342-354 (in Chinese). | |
15 | 李宇杰. Cd1- x Zn x Te晶体的缺陷研究及退火改性[D]. 西安: 西北工业大学, 2001. |
LI Y J. Defect study and annealing modification of Cd1- x Zn x Te[D]. Xi’an: Northwestern Polytechnical University, 2001 (in Chinese). | |
16 | 叶振华, 陈奕宇, 张 鹏. 碲镉汞红外探测器的前沿技术综述[J]. 红外, 2014, 35(2): 1-8. |
YE Z H, CHEN Y Y, ZHANG P. Overview of latest technologies of HgCdTe infrared photoelectric detectors[J]. Infrared, 2014, 35(2): 1-8 (in Chinese). | |
17 | BUGÁR M. Dynamics of structural defects in CdTe-based semiconductors[D]. Prague: Charles University in Prague, 2011: 3-24. |
18 | GUL R, BOLOTNIKOV A, KIM H K, et al. Point defects in CdZnTe crystals grown by different techniques[J]. Journal of Electronic Materials, 2011, 40(3): 274-279. |
19 | BISWAS K, DU M H. What causes high resistivity in CdTe[J]. New Journal of Physics, 2012, 14(6): 063020. |
20 | DU M H, TAKENAKA H, SINGH D J. Carrier compensation in semi-insulating CdTe: first-principles calculations[J]. Physical Review B, 2008, 77(9): 094122. |
21 | SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1242-1249. |
22 | FRANC J, GRILL R, HLÍDEK P, et al. The influence of growth conditions on the quality of CdZnTe single crystals[J]. Semiconductor Science and Technology, 2001, 16(6): 514-520. |
23 | 李万万, 孙 康. Cd1- x Zn x Te晶体的In气氛扩散热处理研究[J]. 物理学报, 2006, 55(4): 1921-1929. |
LI W W, SUN K. Study on the annealing of Cd1- x Zn x Te in in vapor[J]. Acta Physica Sinica, 2006, 55(4): 1921-1929 (in Chinese). | |
24 | KAMIENIECKI E. Effect of charge trapping on effective carrier lifetime in compound semiconductors: high resistivity CdZnTe[J]. Journal of Applied Physics, 2014, 116(19): 193702. |
25 | GUO R R, JIE W Q, WANG N, et al. Influence of deep level defects on carrier lifetime in CdZnTe∶In[J]. Journal of Applied Physics, 2015, 117(9): 094502. |
26 | FIEDERLE M, BABENTSOV V, FRANC J, et al. Growth of high resistivity CdTe and (Cd, Zn)Te crystals[J]. Crystal Research and Technology, 2003, 38(7/8): 588-597. |
27 | NAN R H, WANG T, XU G, et al. Compensation processes in high-resistivity CdZnTe crystals doped with In/Al[J]. Journal of Crystal Growth, 2016, 451: 150-154. |
28 | CHAUDHURI S K, MANDAL K C. Room-temperature radiation detectors based on large-volume CdZnTe single crystals[M]//INIEWSKI K. Advanced Materials for Radiation Detection. Cham: Springer International Publishing, 2022: 211-234. |
29 | 袁绶章, 赵 文, 孔金丞, 等. 原位退火对碲锌镉晶体第二相夹杂缺陷的影响[J]. 红外技术, 2021, 43(7): 615. |
YUAN S Z, ZHAO W, KONG J C, et al. Effect of in situ post-annealing on the second phase inclusion defects in CdZnTe crystals[J]. Infrared Technology, 2021, 43(7): 615 (in Chinese). | |
30 | AMMAN M, LEE J S, LUKE P N. Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe[J]. Journal of Applied Physics, 2002, 92(6): 3198-3206. |
31 | CARINI G A, BOLOTNIKOV A E, CAMARDA G S, et al. Effect of Te precipitates on the performance of CdZnTe detectors[J]. Applied Physics Letters, 2006, 88(14): 143515. |
32 | CARINI G A, BOLOTNIKOV A E, CAMARDA G S, et al. High-resolution X-ray mapping of CdZnTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579(1): 120-124. |
33 | 张 阳, 吴 军, 木 胜, 等. CdZnTe中富碲沉积相缺陷引起的液相外延HgCdTe薄膜表面缺陷[J]. 红外与毫米波学报, 2018, 37(6): 728. |
ZHANG Y, WU J, MU S, et al. Surface defects of liquid phase epitaxial growth of HgCdTe film induced by Te-rich precipitates in CdZnTe substrates[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 728 (in Chinese). | |
34 | CARINI G A, ARNONE C, BOLOTNIKOV A E, et al. Material quality characterization of CdZnTe substrates for HgCdTe epitaxy[J]. Journal of Electronic Materials, 2006, 35(6): 1495-1502. |
35 | QIN G, KONG J C, YANG J, et al. HgCdTe films grown by MBE on CZT(211)B substrates[J]. Journal of Electronic Materials, 2023, 52(4): 2441-2448. |
36 | BRUNETT B A, VAN SCYOC J M, HILTON N R, et al. The performance effects of crystal boundaries in cadmium zinc telluride radiation spectrometers[J]. IEEE Transactions on Nuclear Science, 2000, 47(4): 1353-1359. |
37 | JAMES R B, BRUNETT B, HEFFELFINGER J, et al. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance[J]. Journal of Electronic Materials, 1998, 27(6): 788-799. |
38 | SCHIEBER M, SCHLESINGER T E, JAMES R B, et al. Study of impurity segregation, crystallinity, and detector performance of melt-grown cadmium zinc telluride crystals[J]. Journal of Crystal Growth, 2002, 237: 2082-2090. |
39 | 范叶霞, 徐强强, 吴 卿. 碲锌镉晶体中微观缺陷分析[J]. 红外技术, 2017, 39(8): 694. |
FAN Y X, XU Q Q, WU Q. Microdefects in cadmium zinc telluride crystals[J]. Infrared Technology, 2017, 39(8): 694 (in Chinese). | |
40 | 徐凌燕, 刘 哲, 梁 璐. 高剂量离子辐照效应对CdZnTe∶In晶体光电性能的影响[J]. 稀有金属材料与工程, 2021, 50(6): 1941-1945. |
XU L Y, LIU Z, LIANG L. Effect of high-dose ion irradiation on the optoelectronic properties of CdZnTe∶In crystals[J]. Rare Metal Materials and Engineering, 2021, 50(6): 1941-1945 (in Chinese). | |
41 | TYAGI M, GADKARI S C. Growth ofsingle crystals for nuclear radiation detection[M]//TYAGI A K, NINGTHOUJAM R S. Handbook on synthesis strategies for advanced materials: Volume-II: Processing and functionalization of materials. Singapore: Springer Nature Singapore, 2022: 55-80. |
42 | 吴 卿, 刘江高, 徐强强, 等. 碲锌镉籽晶定向熔接技术研究[J]. 激光与红外, 2020, 50(3): 333-336. |
WU Q, LIU J G, XU Q Q, et al. Research on directional welding technology of CdZnTe seed crystals[J]. Laser & Infrared, 2020, 50(3): 333-336 (in Chinese). | |
43 | ROY U N, BAKER J N, CAMARDA G S, et al. Evaluation of crystalline quality of traveling heater method (THM) grown Cd0.9Zn0.1Te0.98Se0.02 crystals[J]. Applied Physics Letters, 2022, 120(24): 242103. |
44 | BELAS E, BUGÁR M, GRILL R, et al. Elimination of inclusions in (CdZn)Te substrates by post-grown annealing[J]. Journal of Electronic Materials, 2007, 36(8): 1025-1030. |
45 | YU P F, JIE W Q, WANG T. Effect of Te atmosphere annealing on the properties of CdZnTe single crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 643(1): 53-56. |
46 | XU C, SHENG F F, YANG J R. Annealing of CdZnTe materials to reduce inclusion defects[J]. Journal of Crystal Growth, 2016, 451: 126-131. |
47 | SHENG F F, YANG J R, SUN S W, et al. Influence of Cd-rich annealing on defects in Te-rich CdZnTe materials[J]. Journal of Electronic Materials, 2014, 43(7): 2702-2708. |
48 | LI G Q, ZHANG X L, JIE W Q, et al. Thermal treatment of detector-grade CdZnTe[J]. Journal of Crystal Growth, 2006, 295(1): 31-35. |
49 | LI G Q, ZHANG X L, HUA H, et al. Upgrading of CdZnTe by annealing with pure Cd and Zn metals[J]. Semiconductor Science Technology, 2006, 21(3): 392-396. |
50 | HUANG Z, WU S Y, CHEN B S, et al. Tailoring the defects and resistivity in CdZnTe single crystal via one-step annealing with CdTe compound[J]. Vacuum, 2023, 217: 112519. |
51 | XU L Y, WANG J Y, DONG J P, et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing[J]. Journal of Electronic Materials, 2020, 49(8): 4563-4568. |
52 | MA J, KUCIAUSKAS D, ALBIN D, et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations[J]. Physical Review Letters, 2013, 111(6): 067402. |
53 | YANG G, BOLOTNIKOV A E, FOCHUK P M, et al. Study on thermal annealing of cadmium zinc telluride (CZT) crystals[C]// Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII. San Diego, California, USA. SPIE, 2010: 780507. |
54 | HE Y H, JIE W Q, WANG T, et al. Migration of Te inclusions in CdZnTe single crystals under the temperature gradient annealing[J]. Journal of Crystal Growth, 2014, 402: 15-21. |
55 | KIM K H, GUL R, CARCELÉN V, et al. Defect levels and thermomigration of Te precipitates in CdZnTe∶Pb[J]. Journal of Crystal Growth, 2010, 312(6): 781-784. |
56 | KIM K H, SUH J, BOLOTNIKOV A E, et al. Temperature-gradient annealing of CdZnTe under Te overpressure[J]. Journal of Crystal Growth, 2012, 354(1): 62-66. |
57 | DUFF M C, LYNN K G, JONES K, et al. Characterization of secondary phases in modified vertical Bridgman growth CZT[C]// Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI. San Diego, CA. SPIE, 2009: 74490. |
58 | SHEN J, AIDUN D K, REGEL L, et al. Characterization of precipitates in CdTe and Cd1- x Zn x Te grown by vertical Bridgman-Stockbarger technique[J]. Journal of Crystal Growth, 1993, 132(1/2): 250-260. |
59 | HE Y H, JIE W Q, XU Y D, et al. Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal[J]. Scripta Materialia, 2012, 67(1): 5-8. |
60 | EGARIEVWE S U, YANG G, EGARIEVWE A A, et al. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 51-55. |
61 | YANG G, BOLOTNIKOV A E, FOCHUK P M, et al. Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors[J]. Journal of Crystal Growth, 2013, 379: 16-20. |
62 | PIACENTINI G, ZAMBELLI N, BENASSI G, et al. Two-step thermal process in tellurium vapor for tellurium inclusion annealing in high resistivity CdZnTe crystals[J]. Journal of Crystal Growth, 2015, 415: 15-19. |
63 | KIM K, HWANG S, YU H, et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2333-2337. |
64 | KIM E, KIM Y, BOLOTNIKOV A E, et al. Detector performance and defect densities in CdZnTe after two-step annealing[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 923: 51-54. |
65 | RUSTOM D. Low temperature thermal annealing of detector grade CdZnTe (CZT)[D]. Nashville: Fisk University, 2010: 41-50 |
66 | KIM K H, HWANG S, FOCHUK P, et al. The effect of low-temperature annealing on a CdZnTe detector[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2278-2282. |
67 | 刘 勇, 朱世富, 赵北君, 等. CdZnTe晶片表面钝化后的热处理研究[J]. 人工晶体学报, 2011, 40(5): 1107-1110. |
LIU Y, ZHU S F, ZHAO B J, et al. Annealing after surface passivation of CdZnTe wafers[J]. Journal of Synthetic Crystals, 2011, 40(5): 1107-1110 (in Chinese). | |
68 | SUH J, HWANG S, YU H, et al. High-temperature annealing of CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2017, 64(12): 2966-2969. |
69 | SWAIN S K, JONES K A, DATTA A, et al. Study of different cool down schemes during the crystal growth of detector grade CdZnTe[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2341-2345. |
70 | 张 涛, 闵嘉华, 梁小燕, 等. 原位退火对CdZnTe晶体性能的影响[J]. 上海大学学报(自然科学版), 2014, 20(6): 701-706. |
ZHANG T, MIN J H, LIANG X Y, et al. Effect of in situ annealing on properties of CdZnTe crystals[J]. Journal of Shanghai University (Natural Science Edition), 2014, 20(6): 701-706 (in Chinese). | |
71 | HUANG Z, WU S Y, CHEN B S, et al. Enhanced performance CdZnTe single crystal with few surface damages via solution based annealing[J]. Sensors and Actuators A: Physical, 2024, 369: 115168. |
[1] | WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 196-207. |
[2] | WANG Yu, GU Peng, FU Jun, WANG Penggang, LEI Pei, YUAN Li. Research Progress on the Growth of 4H-SiC Crystal by PVT Method and the Defect of Polytype Inclusions [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(12): 2137-2152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||