Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (11): 1990-2001.DOI: 10.16553/j.cnki.issn1000-985x.2025.0095
• Research Articles • Previous Articles Next Articles
LI Shangtong1,2(
), CAI Hua1,2(
), JIA Jinsheng2(
), ZHAO Xuan1,2, LI Xiang1,2,3, NA Tianyi1,2, MA Mengnan1,2
Received:2025-04-28
Online:2025-11-20
Published:2025-12-11
CLC Number:
LI Shangtong, CAI Hua, JIA Jinsheng, ZHAO Xuan, LI Xiang, NA Tianyi, MA Mengnan. Ion Etching Performance of Li2O Doped Tapered Microchannel Plate Frame Materials[J]. Journal of Synthetic Crystals, 2025, 54(11): 1990-2001.
| Type of sample | Element | Atom stoichiometry/% | Displacement energy, Edisp/eV | Lattice binding energy, Elatt/eV | Surface binding energy, Esurf/eV |
|---|---|---|---|---|---|
| SiO2 | Si | 33.3 | 15 | 2.0 | 4.7 |
| O | 66.7 | 28 | 3.0 | 2.0 | |
| Li2O | Li | 66.7 | 25 | 3.0 | 1.67 |
| O | 33.3 | 28 | 3.0 | 2.0 | |
72.5SiO2-27.5Li2O (SL-1) | Si | 24.17 | 15 | 2.0 | 4.7 |
| Li | 18.33 | 25 | 3.0 | 1.67 | |
| O | 57.50 | 28 | 3.0 | 2.0 | |
67.5SiO2-32.5Li2O (SL-2) | Si | 22.50 | 15 | 2.0 | 4.7 |
| Li | 21.67 | 25 | 3.0 | 1.67 | |
| O | 55.83 | 28 | 3.0 | 2.0 | |
65SiO2-35Li2O (SL-3) | Si | 21.67 | 15 | 2.0 | 4.7 |
| Li | 23.33 | 25 | 3.0 | 1.67 | |
| O | 55.00 | 28 | 3.0 | 2.0 | |
62.5SiO2-37.5Li2O (SL-4) | Si | 20.83 | 15 | 2.0 | 4.7 |
| Li | 25.00 | 25 | 3.0 | 1.67 | |
| O | 54.17 | 28 | 3.0 | 2.0 | |
60SiO2-40Li2O (SL-5) | Si | 20.00 | 15 | 2.0 | 4.7 |
| Li | 26.67 | 25 | 3.0 | 1.67 | |
| O | 53.33 | 28 | 3.0 | 2.0 |
Table 1 Parameters of material model
| Type of sample | Element | Atom stoichiometry/% | Displacement energy, Edisp/eV | Lattice binding energy, Elatt/eV | Surface binding energy, Esurf/eV |
|---|---|---|---|---|---|
| SiO2 | Si | 33.3 | 15 | 2.0 | 4.7 |
| O | 66.7 | 28 | 3.0 | 2.0 | |
| Li2O | Li | 66.7 | 25 | 3.0 | 1.67 |
| O | 33.3 | 28 | 3.0 | 2.0 | |
72.5SiO2-27.5Li2O (SL-1) | Si | 24.17 | 15 | 2.0 | 4.7 |
| Li | 18.33 | 25 | 3.0 | 1.67 | |
| O | 57.50 | 28 | 3.0 | 2.0 | |
67.5SiO2-32.5Li2O (SL-2) | Si | 22.50 | 15 | 2.0 | 4.7 |
| Li | 21.67 | 25 | 3.0 | 1.67 | |
| O | 55.83 | 28 | 3.0 | 2.0 | |
65SiO2-35Li2O (SL-3) | Si | 21.67 | 15 | 2.0 | 4.7 |
| Li | 23.33 | 25 | 3.0 | 1.67 | |
| O | 55.00 | 28 | 3.0 | 2.0 | |
62.5SiO2-37.5Li2O (SL-4) | Si | 20.83 | 15 | 2.0 | 4.7 |
| Li | 25.00 | 25 | 3.0 | 1.67 | |
| O | 54.17 | 28 | 3.0 | 2.0 | |
60SiO2-40Li2O (SL-5) | Si | 20.00 | 15 | 2.0 | 4.7 |
| Li | 26.67 | 25 | 3.0 | 1.67 | |
| O | 53.33 | 28 | 3.0 | 2.0 |
| Type of sample | Element | Sputtering yield (total) | Sputtering yield (single element) |
|---|---|---|---|
| SiO2 | Si | 0.482 | 0.073 9 |
| O | 0.407 6 | ||
| Li2O | Li | 0.312 | 0.219 9 |
| O | 0.091 8 | ||
72.5SiO2-27.5Li2O (SL-1) | Si | 0.437 | 0.053 6 |
| Li | 0.062 7 | ||
| O | 0.320 7 | ||
67.5SiO2-32.5Li2O (SL-2) | Si | 0.431 | 0.051 7 |
| Li | 0.066 0 | ||
| O | 0.313 3 | ||
65SiO2-35Li2O (SL-3) | Si | 0.423 | 0.049 9 |
| Li | 0.071 5 | ||
| O | 0.301 6 | ||
62.5SiO2-37.5Li2O (SL-4) | Si | 0.414 | 0.048 0 |
| Li | 0.077 0 | ||
| O | 0.289 0 | ||
60SiO2-40Li2O (SL-5) | Si | 0.410 | 0.046 2 |
| Li | 0.082 5 | ||
| O | 0.281 3 |
Table 2 Simulated sputtering yields for different elements and oxides (incident angle of Ar+ is 10°)
| Type of sample | Element | Sputtering yield (total) | Sputtering yield (single element) |
|---|---|---|---|
| SiO2 | Si | 0.482 | 0.073 9 |
| O | 0.407 6 | ||
| Li2O | Li | 0.312 | 0.219 9 |
| O | 0.091 8 | ||
72.5SiO2-27.5Li2O (SL-1) | Si | 0.437 | 0.053 6 |
| Li | 0.062 7 | ||
| O | 0.320 7 | ||
67.5SiO2-32.5Li2O (SL-2) | Si | 0.431 | 0.051 7 |
| Li | 0.066 0 | ||
| O | 0.313 3 | ||
65SiO2-35Li2O (SL-3) | Si | 0.423 | 0.049 9 |
| Li | 0.071 5 | ||
| O | 0.301 6 | ||
62.5SiO2-37.5Li2O (SL-4) | Si | 0.414 | 0.048 0 |
| Li | 0.077 0 | ||
| O | 0.289 0 | ||
60SiO2-40Li2O (SL-5) | Si | 0.410 | 0.046 2 |
| Li | 0.082 5 | ||
| O | 0.281 3 |
| Sample | Mole fraction/% | Temperature/℃ | Result | |
|---|---|---|---|---|
| SiO2 | Li2O | |||
| SL-1 | 72.5 | 27.5 | 1 300 | Refractory melting |
| SL-2 | 67.5 | 32.5 | 1 300 | Transparent glass |
| SL-3 | 65.0 | 35.0 | 1 280 | Transparent glass |
| SL-4 | 62.5 | 37.5 | 1 280 | Transparent glass |
| SL-5 | 60.0 | 40.0 | 1 250~1 300 | Opaque glass |
Table 3 Composition of Si2O-Li2O glasses
| Sample | Mole fraction/% | Temperature/℃ | Result | |
|---|---|---|---|---|
| SiO2 | Li2O | |||
| SL-1 | 72.5 | 27.5 | 1 300 | Refractory melting |
| SL-2 | 67.5 | 32.5 | 1 300 | Transparent glass |
| SL-3 | 65.0 | 35.0 | 1 280 | Transparent glass |
| SL-4 | 62.5 | 37.5 | 1 280 | Transparent glass |
| SL-5 | 60.0 | 40.0 | 1 250~1 300 | Opaque glass |
| [1] | MAZURITSKIY M I, LERER A M. Focusing of long-wavelength X-rays by means of spherical and planar microchannel plates[J]. JETP Letters, 2020, 112(3): 138-144. |
| [2] | MATOBA S, ISHIKAWA G, MORIYA S, et al. Note: absolute detection efficiency of a tapered microchannel plate for Ne+ ions[J]. Review of Scientific Instruments, 2014, 85(8): 086105. |
| [3] | MORIKAWA K, MATSUSHITA K, TSUKAHARA T. Rapid plasma etching for fabricating fused silica microchannels[J]. Analytical Sciences, 2017, 33(12): 1453-1456. |
| [4] | 蔡 华, 刘 辉, 薄铁柱, 等. 一种微通道板及其制备方法和应用: CN117612924A[P]. 2024-02-27. |
| CAI H, LIU H, BO T Z, et al. A microchannel plate and its preparation method and application: CN117612924A[P]. 2024-02-27 (in Chinese). | |
| [5] | CAI H, LIU H, BO T Z, et al. Microchannel plate,preparation method and application thereof: US, 19/114576[P]. 2025-03-24. |
| [6] | CAI H, SUN Y, ZHANG X, et al. Reduction temperature-dependent nanoscale morphological transformation and electrical conductivity of silicate glass microchannel plate[J]. Materials, 2019, 12(7): 1183. |
| [7] | 邱祥彪. 全氧化物PN结和多铁隧道结的制备与性能研究[D]. 南京: 南京大学, 2015. |
| QIU X B. Preparation and properties of all-oxide PN junction and multiferroic tunnel junction[D]. Nanjing: Nanjing University, 2015 (in Chinese). | |
| [8] | YOSHIMURA S, HINE K, KIUCHI M, et al. Experimental evaluation of CaO, SrO and BaO sputtering yields by Ne+ or Xe+ ions[J]. Journal of Physics D: Applied Physics, 2011, 44(25): 255203. |
| [9] | IKUSE K, YOSHIMURA S, HINE K, et al. Sputtering yields of Au by low-energy noble gas ion bombardment[J]. Journal of Physics D: Applied Physics, 2009, 42(13): 135203. |
| [10] | WU S M, VAN DE KRUIJS R, ZOETHOUT E, et al. Sputtering yields of Ru, Mo, and Si under low energy Ar+ bombardment[J]. Journal of Applied Physics, 2009, 106(5): 054902. |
| [11] | SHULGA V I. Note on the artefacts in SRIM simulation of sputtering[J]. Applied Surface Science, 2018, 439: 456-461. |
| [12] | HOFSÄSS H, ZHANG K, MUTZKE A. Simulation of ion beam sputtering with SDTrimSP, TRIDYN and SRIM[J]. Applied Surface Science, 2014, 310: 134-141. |
| [13] | 李欣年, 王传珊, 罗文芸, 等. 蒙特卡罗模拟单元素靶的溅射产额角分布[J]. 上海大学学报(自然科学版), 1996, 2(1): 12-17. |
| LI X N, WANG C S, LUO W Y, et al. Monte-Carlo simulation of sputtering for angular distribution of sputtered atoms from element targets[J]. Journal of Shanghai University (Natural Science Edition), 1996, 2(1): 12-17 (in Chinese). | |
| [14] | 单慧波, 姜恩永, 李金锷. 溅射过程的Monte Carlo方法模拟计算[J]. 天津大学学报, 1989, 22(2): 107-112. |
| SHAN H B, JIANG E Y, LI J E. Computer simulation of sputter process by Monte Carlo method[J]. Journal of Tianjin University, 1989, 22(2): 107-112 (in Chinese). | |
| [15] | 清 水, 王继常. 溅射的计算机模拟[J]. 真空, 1981, 18(6): 68-74. |
| QING S, WANG J C. Computer simulation of sputtering[J]. Vacuum, 1981, 18(6): 68-74 (in Chinese). | |
| [16] | MAHIEU S, BUYLE G, DEPLA D, et al. Monte Carlo simulation of the transport of atoms in DC magnetron sputtering[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 243(2): 313-319. |
| [17] | DZHURAKHALOV A A. Sputtering of binary crystal surface under grazing ion bombardment[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 216: 202-205. |
| [18] | CASSIDY T A, JOHNSON R E. Monte Carlo model of sputtering and other ejection processes within a regolith[J]. Icarus, 2005, 176(2): 499-507. |
| [19] | LU H F, ZHANG C, ZHANG Q Y. Adatom, vacancy and sputtering yields of low energy Pt atoms impacts on Pt(111) by molecular dynamics simulation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 206: 22-26. |
| [20] | URBASSEK H M. Molecular-dynamics simulation of sputtering[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 122(3): 427-441. |
| [21] | YAMAMURA Y. A simple analysis of the angular dependence of light-ion sputtering[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1984, 2(1/2/3): 578-582. |
| [22] | KORNICH G V, BETZ G, ZAPOROJTCHENKO V, et al. Molecular dynamics simulations of interactions of Ar and Xe ions with surface Cu clusters at low impact energies[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 228(1/2/3/4): 41-45. |
| [23] | BRINGA E M, JOHNSON R E, DUTKIEWICZ. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: part II[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 152(2/3): 267-290. |
| [24] | SIGMUND P. Theory of sputtering. I. sputtering yield of amorphous and polycrystalline targets[J]. Physical Review, 1969, 184(2): 383-416. |
| [25] | 邵其鋆, 潘正瑛. 离子法向轰击单元素靶溅射产额的解析估算[J]. 核技术, 1994, 17(6): 335-339. |
| SHAO Q J, PAN Z Y. Analytical evaluation for the sputtering yield of monoatomic solids at normal ion incidence[J]. Nuclear Techniques, 1994, 17(6): 335-339 (in Chinese). | |
| [26] | ZIEGLER J F, ZIEGLER M D, BIERSACK J P. SRIM-The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823. |
| [27] | 张德根. Ar+入射Cu靶溅射产额的计算与分析[J]. 蚌埠学院学报, 2015, 4(3): 39-41. |
| ZHANG D G. Calculation and analysis of sputtering yield of copper target by incident argon ion[J]. Journal of Bengbu University, 2015, 4(3): 39-41 (in Chinese). | |
| [28] | 柯海鹏, 欧雪雯, 柯少颖. He离子注入对Ge中缺陷行为的影响研究[J]. 人工晶体学报, 2020, 49(12): 2244-2251. |
| KE H P, OU X W, KE S Y. Effect of He ion implantation on the defect behaviour in Ge[J]. Journal of Synthetic Crystals, 2020, 49(12): 2244-2251 (in Chinese). | |
| [29] | 胡邦杰, 张清华, 刘民才, 等. 基于蒙特卡罗方法的离子束溅射熔融石英、硅、金和铜行为特征规律仿真研究[J]. 激光与光电子学进展, 2023, 60(7): 255-262. |
| HU B J, ZHANG Q H, LIU M C, et al. Simulation study on behavior characteristics of ion-beam sputtering to fused silica, silicon, gold, and copper using Monte Carlo method[J]. Laser & Optoelectronics Progress, 2023, 60(7): 255-262 (in Chinese). | |
| [30] | 徐 锋, 左敦稳, 张旭辉, 等. 偏压对磁控溅射沉积立方氮化硼薄膜的影响[J]. 人工晶体学报, 2012, 41(4): 853-857. |
| XU F, ZUO D W, ZHANG X H, et al. Effect of substrate bias on the cBN film deposition by magnetron sputtering[J]. Journal of Synthetic Crystals, 2012, 41(4): 853-857 (in Chinese). |
| [1] | ZUO Fen, ZHAI Zhangyin. Preparation Process of n-Type GaAs Ohmic Contact Electrode [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 606-610. |
| [2] | WANG Chao;JIE Xiao-hua;LIU Ye;XU Jiang;TAO Hong-liang;WEI Ju. Study on Microstructure of Cr-coated Diamond Processed by Ion Sputtering with Double Cathodes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(2): 361-364. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS