JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (11): 1995-2012.
• Invited • Next Articles
WANG Xinyue1,2, ZHANG Shengnan1,2, HUO Xiaoqing1,2, ZHOU Jinjie1,2, WANG Jian1,2, CHENG Hongjuan1,2
Online:
2021-11-15
Published:
2021-12-13
CLC Number:
WANG Xinyue, ZHANG Shengnan, HUO Xiaoqing, ZHOU Jinjie, WANG Jian, CHENG Hongjuan. Research Progress of Ultra-Wide Bandgap Semiconductor β-Ga2O3[J]. Journal of Synthetic Crystals, 2021, 50(11): 1995-2012.
[1] DE BOISBAUDRAN L. On the chemical and spectroscopic characters of a new metal (gallium)[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1875, 50(332): 414-416. [2] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3—H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [3] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [4] STEPANOV S, NIKOLAEV V, BOUGROV V, et al. Gallium oxide: properties and apply: a review[J]. Rev Adv Mater Sci, 2016, 44: 63-86. [5] 贾志泰,穆文祥,尹延如,等.导模法生长高质量氧化镓单晶的研究[J].人工晶体学报,2017,46(2):193-196. JIA Z T, MU W X, YIN Y R, et al. Growth of high quality β-Ga2O3 single crystal by EFG method[J]. Journal of Synthetic Crystals, 2017, 46(2): 193-196(in Chinese). [6] 马海鑫,丁广玉,邢艳辉,等.不同退火条件对PEALD制备的Ga2O3薄膜特性的影响[J].人工晶体学报,2021,50(5):838-844. MA H X, DING G Y, XING Y H, et al. Effects of different annealing conditions on the characteristics of Ga2O3 thin films prepared by PEALD[J]. Journal of Synthetic Crystals, 2021, 50(5): 838-844(in Chinese). [7] 张 晋,胡壮壮,穆文祥,等.高质量氧化镓单晶及肖特基二极管的制备[J].人工晶体学报,2020,49(11):2194-2199. ZHANG J, HU Z Z, MU W X, et al. High quality β-Ga2O3 single crystal and fabrication of Schottky diode[J]. Journal of Synthetic Crystals, 2020, 49(11): 2194-2199(in Chinese). [8] TOMM Y, REICHE P, KLIMM D, et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 2000, 220(4): 510-514. [9] TOMM Y, KO J M, YOSHIKAWA A, et al. Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications[J]. Solar Energy Materials and Solar Cells, 2001, 66(1/2/3/4): 369-374. [10] FUKUDA T, SHIMAMURA K, YOSHIKAWA A, et al. Crystal growth of new functional materials for electro-optical applications[C]//Proc SPIE 4412, International Conference on Solid State Crystals 2000: Growth, Characterization, and Applications of Single Crystals, 2001, 4412: 18-25. [11] VIÍLLORA E G, ATOU T, SEKIGUCHI T, et al. Cathodoluminescence of undoped β-Ga2O3 single crystals[J]. Solid State Communications, 2001, 120(11): 455-458. [12] VIÍLLORA E G, MORIOKA Y, ATOU T, et al. Infrared reflectance and electrical conductivity of β-Ga2O3[J]. Physica Status Solidi (a), 2002, 193(1): 187-195. [13] VIÍLLORA E G, MURAKAMI Y, SUGAWARA T, et al. Electron microscopy studies of microstructures in β-Ga2O3 single crystals[J]. Materials Research Bulletin, 2002, 37(4): 769-774. [14] GARCÍA VÍLLORA E, HATANAKA K, ODAKA H, et al. Luminescence of undoped β-Ga2O3 single crystals excited by picosecond X-ray and sub-picosecond UV pulses[J]. Solid State Communications, 2003, 127(5): 385-388. [15] YAMAGA M, VÍLLORA E G, SHIMAMURA K, et al. Donor structure and electric transport mechanism in β-Ga2O3[J]. Physical Review B, 2003, 68(15): 155207. [16] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426. [17] SHIMAMURA K, VILLORA E G, MURAMATU K, et al. Optoelectronic single-crystal candidates for UV/VUV light sources (<Special Issue> Crystal Growth Technology of Fluoride and Oxide Developed from the Viewpoint of Their Material and Functional Properties)[J]. J Jpn Assoc Cryst Growth, 2006, 33: 147-154. [18] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3Single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 8506-8509. [19] VÍLLORA E G, SHIMAMURA K, KITAMURA K, et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3[J]. Applied Physics Letters, 2006, 88(3): 031105. [20] OSHIMA T, OKUNO T, FUJITA S. Ga2O3Thin film growth onc-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220. [21] OHIRA S, YOSHIOKA M, SUGAWARA T, et al. Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3[J]. Thin Solid Films, 2006, 496(1): 53-57. [22] OHIRA S, SUZUKI N, ARAI N, et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing[J]. Thin Solid Films, 2008, 516(17): 5763-5767. [23] OHIRA S, ARAI N, OSHIMA T, et al. Atomically controlled surfaces with step and terrace of β-Ga2O3 single crystal substrates for thin film growth[J]. Applied Surface Science, 2008, 254(23): 7838-7842. [24] OSHIMA T, ARAI N, SUZUKI N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy[J]. Thin Solid Films, 2008, 516(17): 5768-5771. [25] OSHIMA T, FUJITA S. Properties of Ga2O3-based (InxGa1-x)2O3 alloy thin films grown by molecular beam epitaxy[J]. Physica Status Solidi C, 2008, 5(9): 3113-3115. [26] OSHIMA T, OKUNO T, ARAI N, et al. β-Al2xGa2-2xO3Thin film growth by molecular beam epitaxy[J]. Japanese Journal of Applied Physics, 2009, 48(7): 070202. [27] SHIMAMURA K, VÍLLORA E G, DOMEN K, et al. Epitaxial growth of GaN on (100) β-Ga2O3Substrates by metalorganic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2005, 44(1): L7-L8. [28] VÍLLORA E G, SHIMAMURA K, KITAMURA K, et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3[J]. Applied Physics Letters, 2007, 90(23): 234102. [29] OSHIMA T, OKUNO T, ARAI N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3Substrates[J]. Applied Physics Express, 2008, 1(1): 011202. [30] OSHIMA T, OKUNO T, ARAI N, et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 2009, 48(1): 011605. [31] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504. [32] SASAKI K, KURAMATA A, MASUI T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 2012, 5(3): 035502. [33] HIGASHIWAKI M, SASAKI K, WONG M H, et al. Research and development on Ga2O3 transistors and diodes[C]//The 1 st IEEE Workshop on Wide Bandgap Power Devices and Applications. October 27-29, 2013, Columbus, OH, USA. IEEE, 2013: 100-103. [34] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Development of gallium oxide power devices[J]. Physica Status Solidi (a), 2014, 211(1): 21-26. [35] HIGASHIWAKI M, SASAKI K, WONG M H, et al. Current status of gallium oxide-based power device technology[C]//2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). October 11-14, 2015, New Orleans, LA, USA. IEEE, 2015: 1-4. [36] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. [37] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//SPIE OPTO. Proc SPIE 10533, Oxide-Based Materials and Devices Ⅸ, San Francisco, California, USA. 2018, 1053: 9-14. [38] NOMURA K, GOTO K, TOGASHI R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2014, 405: 19-22. [39] MURAKAMI H, NOMURA K, GOTO K, et al. Homoepitaxial growth of β-Ga2O3layers by halide vapor phase epitaxy[J]. Applied Physics Express, 2015, 8(1): 015503. [40] GALAZKA Z, UECKER R, IRMSCHER K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 2010, 45(12): 1229-1236. [41] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. [42] SCHEWSKI R, BALDINI M, IRMSCHER K, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—a quantitative model[J]. Journal of Applied Physics, 2016, 120(22): 225308. [43] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. [44] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2016, 37(7): 902-905. [45] CHABAK K D, MOSER N, GREEN A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage[J]. Applied Physics Letters, 2016, 109(21): 213501. [46] CHABAK K, GREEN A, MOSER N, et al. Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation[C]//2017 75th Annual Device Research Conference (DRC). June 25-28, 2017, South Bend, IN, USA. IEEE, 2017: 1-2. [47] MOSER N, MCCANDLESS J, CRESPO A, et al. Ge-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2017, 38(6): 775-778. [48] CHABAK K D, MCCANDLESS J P, MOSER N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(1): 67-70. [49] LIDDY K J, GREEN A J, HENDRICKS N S, et al. Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates[J]. Applied Physics Express, 2019, 12(12): 126501. [50] LI W S, HU Z Y, NOMOTO K, et al. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of 1 μA/cm2[J]. Applied Physics Letters, 2018, 113(20): 202101. [51] LI W S, NOMOTO K, HU Z Y, et al. 1.5 kV vertical Ga2O3 trench-MIS Schottky barrier diodes[C]//2018 76th Device Research Conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, 2018: 1-2. [52] LI W S, HU Z Y, NOMOTO K, et al. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current[J]. 2018 IEEE International Electron Devices Meeting (IEDM), 2018: 8.5.1-8.5.4. [53] ALLEN N, XIAO M, YAN X D, et al. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: a baliga's figure-of-merit of 0.6 GW/cm2[J]. IEEE Electron Device Letters, 2019, 40(9): 1399-1402. [54] LI W S, NOMOTO K, HU Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2[J]. IEEE Electron Device Letters, 2020, 41(1): 107-110. [55] YANG J C, REN F, TADJER M, et al. 2.3 kV field-plated vertical Ga2O3 Schottky rectifiers and 1 a forward current with 650 V reverse breakdown Ga2O3 field-plated Schottky barrier diodes[C]//2018 76th Device Research Conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, 2018: 1-2. [56] ZENG K, VAIDYA A, SINGISETTI U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388. [57] SHARMA S, ZENG K, SAHA S, et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage[J]. IEEE Electron Device Letters, 2020, 41(6): 836-839. [58] YAO Y, DAVIS R F, PORTER L M. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties[J]. Journal of Electronic Materials, 2017, 46(4): 2053-2060. [59] BROOKS TELLEKAMP M, HEINSELMAN K N, HARVEY S, et al. Growth and characterization of homoepitaxial β-Ga2O3 layers[J]. Journal of Physics D: Applied Physics, 2020, 53(48): 484002. [60] JI M, TAYLOR N R, KRAVCHENKO I, et al. Demonstration of large-size vertical Ga2O3 Schottky barrier diodes[J]. IEEE Transactions on Power Electronics, 2020, 36(1): 41-44. [61] YANG T H, FU H Q, CHEN H, et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801. [62] KWON Y, LEE G, OH S, et al. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching[J]. Applied Physics Letters, 2017, 110(13): 131901. [63] JANG S, JUNG S, BEERS K, et al. A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3[J]. Journal of Alloys and Compounds, 2018, 731: 118-125. [64] MUN J K, CHO K, CHANG W, et al. Editors’ choice—2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3079-Q3082. [65] ZHANG J G, XIA C T, DENG Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3:Sn[J]. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1656-1659. [66] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. [67] MU W X, JIA Z T, YIN Y R, et al. One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors[J]. CrystEngComm, 2017, 19(34): 5122-5127. [68] MU W X, YIN Y R, JIA Z T, et al. An extended application of β-Ga2O3 single crystals to the laser field: Cr4+: β-Ga2O3 utilized as a new promising saturable absorber[J]. RSC Advances, 2017, 7(35): 21815-21819. [69] FU B, MU W X, ZHANG J, et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method[J]. Cryst Eng Comm, 2020, 22(30): 5060-5066. [70] 唐慧丽,何诺天,罗 平,等.超宽禁带半导体β-Ga2O3单晶生长突破2英寸[J].人工晶体学报,2017,46(12):2533-2534. TANG H L, HE N T, LUO P, et al. Ultra-wide bandgap semiconductor β-Ga2O3 single crystal growth breaks through 2 inches[J]. Journal of Synthetic Crystals, 2017, 46(12): 2533-2534(in Chinese). [71] TANG H L, HE N T, ZHANG H, et al. Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method[J]. CrystEngComm, 2020, 22(5): 924-931. [72] ZHANG S N, LIAN X Z, MA Y C, et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors, 2018, 39(8): 083003. [73] 练小正,张胜男,程红娟,等.导模法生长大尺寸高质量β-Ga2O3单晶[J].半导体技术,2018,43(8):622-626. LIAN X Z, ZHANG S N, CHENG H J, et al. High-quality and large-size β-Ga2O3 single crystals grown by edge-defined film-fed growth method[J]. Semiconductor Technology, 2018, 43(8): 622-626(in Chinese). [74] GUO D Y, WU Z P, AN Y H, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 023507. [75] LI Y W, XIU X Q, XU W L, et al. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 014003. [76] LÜ Y, SONG X B, HE Z Z, et al. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V[J]. Journal of Semiconductors, 2019, 40(1): 012803. [77] FENG Q, HUANG L, HAN G Q, et al. Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire[J]. IEEE Transactions on Electron Devices, 2016, 63(9): 3578-3583. [78] HU Z Z, ZHOU H, DANG K, et al. Lateral β -Ga2O3 Schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV[J]. IEEE Journal of the Electron Devices Society, 2018, 6: 815-820. [79] ZHANG T, HU Z G, LI Y F, et al. Comparison of Ga2O3 films grown on m- and r-plane sapphire substrates by MOCVD[J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 125008. [80] FENG Z Q, CAI Y C, YAN G S, et al. A 800 V β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high-power figure of merit of over 86.3 MW·cm-2[J]. Physica Status Solidi (a), 2019, 216(20): 1900421. [81] HU Z Z, ZHOU H, FENG Q, et al. Field-plated lateral β -Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2[J]. IEEE Electron Device Letters, 2018, 39(10): 1564-1567. [82] GUO Z, VERMA A, WU X F, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide[J]. Applied Physics Letters, 2015, 106(11): 111909. [83] XU W H, WANG Y B, YOU T G, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[J]. 2019 IEEE International Electron Devices Meeting (IEDM), 2019: 12.5.1-12.5.4. [84] HIGASHIWAKI M, SASAKI K, KAMIMURA T, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics[J]. Applied Physics Letters, 2013, 103(12): 123511. [85] ZHANG K H L, XI K, BLAMIRE M G, et al. P-type transparent conducting oxides[J]. Journal of Physics: Condensed Matter, 2016, 28(38): 383002. [86] WILLIAMSON B A D, BUCKERIDGE J, BROWN J, et al. Engineering valence band dispersion for high mobility p-type semiconductors[J]. Chemistry of Materials, 2017, 29(6): 2402-2413. [87] TANG C, SUN J, LIN N, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study[J]. RSC Advances, 2016, 6(82): 78322-78334. [88] YAN C Y, SU J, WANG Y F, et al. Reducing the acceptor levels of p-type β-Ga2O3 by (metal, N) co-doping approach[J]. Journal of Alloys and Compounds, 2021, 854: 157247. [89] JIANG Z X, WU Z Y, MA C C, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product[J]. Materials Today Physics, 2020, 14: 100226. |
[1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[2] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
[3] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[4] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[5] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[6] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[7] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[8] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[9] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
[10] | CAO Cong, LIU Jianggao, FAN Yexia, LI Zhenxing, ZHOU Zhenqi, MA Qisi, NIU Jiajia. Relationship Between Temperature Gradient and Interfacial Shape Stability of CZT Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 641-648. |
[11] | LI Chuanhao, LI Zhonghui, PENG Daqing, ZHANG Dongguo, YANG Qiankun, LUO Weike. Study on vdW Epitaxy Mechanism and Stress Modulation of Large-Size GaN Microwave Material [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 252-257. |
[12] | WANG Kunyuan, LIANG Xiaoyan, MIN Jiahua, ZHANG Jijun. Effect of In-Situ Heating Treatment on the Quality and Properties of CdZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2079-2084. |
[13] | LI Dongmei, ZHOU Jun, WU Feifan, LYU Jiabo, XIAO Li, GONG Hengxiang. Effect of Electrostatic Field on the Preparation of TiO2 Thin Films by Ultrasonic Atomised Pyrolytic Spraying [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2173-2180. |
[14] | REN Yongchun, LI Jianda, CAO Xiao, HUANG Yi, ZHANG Fan, ZHANG Ning, XUE Yanyan, WANG Qingguo, TANG Huili, XU Xiaodong, DONG Yongjun, XU Jun. Research Progress on High-Melting-Point Rare Earth Oxides Laser Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1829-1839. |
[15] | GUO Jun, LIU Jian, WANG Zebin, CHEN Peng, SONG Qingsong, MA Jie, WANG Qingguo, XU Xiaodong, XU Jun. Growth, Spectroscopic Properties and Laser Performance of Nd∶ASL Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1877-1883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||