[1] GAO Z, LAI Y L, TAO Y, et al. Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate[J]. ACS Central Science, 2021, 7(6): 1066-1072. [2] DU R, WU Y F, YANG Y C, et al. Electrochemical energy storage: porosity engineering of MOF-based materials for electrochemical energy storage (adv. energy mater. 20/2021)[J]. Advanced Energy Materials, 2021, 11(20): 2170078. [3] SUN Q Q, BI H T, WANG Z, et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy[J]. Biomaterials, 2019, 223: 119473. [4] XUE Z, ZHU M, DONG Y, et al. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy[J]. Nanoscale, 2019, 11(24): 11709-11718. [5] STACKHOUSE C A, MA S Q. Azamacrocyclic-based metal organic frameworks: design strategies and applications[J]. Polyhedron, 2018, 145: 154-165. [6] XUE X F, LIU Y Q, LIU Q, et al. Four novel coordination polymers based on flexible 1, 4-bis(1, 2, 4-triazol-1-ylmethyl)benzene ligand: synthesis, structure, luminescence and magnetic properties[J]. Journal of Cluster Science, 2019, 30(3): 777-787. [7] WEI Y S, ZOU L L, WANG H F, et al. Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications[J]. Advanced Energy Materials, 2021: 2003970. [8] FENG L, PANG J D, SHE P, et al. Metal-organic frameworks based on group 3 and 4 metals[J]. Adv Mater, 2020, 32(44): 2004414. [9] LIU L J, KONSTAS K, HILL M R, et al. Programmed pore architectures in modular quaternary metal-organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(47): 17731-17734. [10] HE Y P, TAN Y X, ZHANG J. Functional metal-organic frameworks constructed from triphenylamine-based polycarboxylate ligands[J]. Coordination Chemistry Reviews, 2020, 420: 213354. [11] LI Y, XUE M, YUE X, et al. Synthesis, crystal structure, theoretical calculation, and photophysical property of a new Cd(Ⅱ) complex based on N-heterocyclic ligand and isophthalic acid[J]. Chinese Journal of Structural Chemistry (2021), 40(3): 329-333. [12] CHATTERJEE D, VAN ELDIK R. Electron transfer reactions of RuⅢ(edta) containing the N-heterocyclic ligand pyrazine: kinetic and mechanistic studies[J]. Macroheterocycles, 2020, 13(3): 193-200. [13] HAN B X, JIANG Y F, SUN X R, et al. Proton conductive N-heterocyclic metal-organic frameworks[J]. Coordination Chemistry Reviews, 2021, 432: 213754. [14] XUE X F, LIU Y Q, XING Y B, et al. Two new nickel, cobalt coordination polymers based on flexible 1, 3-bis((1H-imidazolyl)-methyl)benzene ligand: syntheses, structures and magnetic properties[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(3): 820-828. [15] WU W L, DONG J P, LIU K C, et al. Crystal structures and magnetic properties of manganese(Ⅱ) and nickel(Ⅱ) complexes constructed from 1, 3, 5-tris(carboxymethoxy)benzene acid ligand[J]. Transition Metal Chemistry, 2021, 46(1): 73-79. [16] LI B, DONG M M, FAN H T, et al. Halogen…Halogen interactions in the assembly of high-dimensional supramolecular coordination polymers based on 3, 5-diiodobenzoic acid[J]. Crystal Growth & Design, 2014, 14(12): 6325-6336. [17] CAI S L, LU L, SHI C C, et al. Effect of ligand on the assembly of two entangled coordination polymers: structures and photocatalytic properties[J]. Polyhedron, 2020, 191: 114804. [18] LI J N, DU Z Y, LI N F, et al. Two three-dimensional polyanionic clusters [M(P4Mo6)2] (M = Co, Zn) exhibiting excellent photocatalytic CO2 reduction performance[J]. Dalton Transactions, 2021, 50(26): 9137-9143. [19] WANG J, SHI W, LI S, et al. Construction of a new binding manner in carboxylic acid-functionalized phosphomolybdates[J]. Dalton Transactions (Cambridge, England, 2018, 47(24): 7949-7955. [20] ZHANG F, HOU L, ZHANG W, et al. Two metal-organic frameworks based on a flexible benzimidazole carboxylic acid ligand: selective gas sorption and luminescence[J]. Dalton Transactions, 2017, 46(43): 15118-15123. [21] SUN X J, YANG P, HOU G F, et al. Luminescent functionalised supramolecular coordination polymers based on an aromatic carboxylic acid ligand for sensing Hg2+ ions[J]. Australian Journal of Chemistry, 2017, 70(7): 786. [22] PATEL U, PATEL P, PARMAR B, et al. Synergy of dual functional sites for conversion of CO2 in a cycloaddition reaction under solvent-free conditions by a Zn(Ⅱ)-based coordination network with a ladder motif[J]. Crystal Growth & Design, 2021, 21(3): 1833-1842. [23] CHEN S S, HAN S S, MA C B, et al. A series of metal-organic frameworks: syntheses, structures and luminescent detection, gas adsorption, magnetic properties[J]. Crystal Growth & Design, 2021, 21(2): 869-885. [24] LU X, ZHAO Y, WANG X L, et al. Six CoII coordination polymers exhibiting UV-light-driven photocatalysis for the degradation of organic dyes[J]. CrystEngComm, 2021, 23(21): 3828-3837. [25] ÇIFTÇI E, KAYA M, ARıCı M, et al. Two copper(Ⅱ) coordination polymers constructed from 3, 3-dimethylglutarate and citrate ligands[J]. Journal of Molecular Structure, 2020, 1220: 128695. [26] 金 晶,付海霞,刘佳操,等.1个新的Mn(Ⅳ)配合物的合成、结构及光物理性质[J].辽宁师范大学学报(自然科学版),2013,36(2):229-233. JIN J, FU H X, LIU J C, et al. Synthesis, crystal structure and photophysical property of a Mn(Ⅳ) coordination complex[J]. Journal of Liaoning Normal University (Natural Science Edition), 2013, 36(2): 229-233(in Chinese). [27] LIU X W, ZHONG B W, ZHANG Y H, et al. Structure and properties of a dimer complex: [Co2(hdmg)2(Dien)2](ClO4)2·4.5(H2O)[J]. Applied Mechanics and Materials, 2013, 372: 80-83. [28] ARıCı M, ERER H K, KARAÇAM S, et al. Coordination polymers based on 3, 3-dimethylglutarate and 1, 4-bis((1H-imidazol-1-yl)methyl)benzene: hydrothermal synthesis and characterizations[J]. Journal of Solid State Chemistry, 2019, 277: 811-818. [29] SHEN H Y, LIAO D Z, JIANG Z H, et al. Synthesis and characterization of copper(Ⅱ), iron(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ) and manganese(Ⅱ) complexes of azido-1, 4-bis(imidazol-1-yl-methyl)benzene (bix) or 1, 4-bis(imidazol-L-yl-methyl)-2, 5-dimethyl-benzene) (mebix)[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1999, 29(8): 1331-1338. [30] MA J F, YANG J, ZHENG G L, et al. A porous supramolecular architecture from a copper(Ⅱ) coordination polymer with a 3D four-connected 8(6) net[J]. Inorganic Chemistry, 2003, 42(23): 7531-7534. [31] LIU Y Q, MENG B F, WANG X Y, et al. Synthesis, crystal structure and magnetic property of a new three-dimensional Mn-Na heteronuclear coordination complex based on 3, 5-pyrazoledicarboxylic acid[J]. Journal of Cluster Science, 2016, 27(4): 1253-1261. [32] 原 野,王 明,周云琪,等.金属有机框架孔径调控进展[J].化工学报,2020,71(2):429-450. YUAN Y, WANG M, ZHOU Y Q, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450(in Chinese). [33] LEE M K, SHOKOUHIMEHR M, KIM S Y, et al. Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: distinct merits by the reduced dimension[J]. Advanced Energy Materials, 2021: 2003990. [34] NUNOCHA P, KAEWPANHA M, BONGKARN T, et al. A new route to synthesizing La-doped SrTiO3 nanoparticles using the sol-gel auto combustion method and their characterization and photocatalytic application[J]. Materials Science in Semiconductor Processing, 2021, 134: 106001. [35] LIU C M, GAO S, HU H M, et al. Hydrothermal syntheses and crystal structures of two-dimensional (2D) layered vanadium oxide complexes: m(bipy)(H2O)V2O6 (M=Ni, Co, bipy=bipyridine) and [Ni(bipy)2V6O17[J]. Journal of the Chemical Society(Dalton Transactions), 2002(4): 598. |