[1] MUKHOPADHYAY S, RAY S.Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method:optical and structural properties[J]. Applied Surface Science, 2011, 257(23): 9717-9723. [2] SAMANTA A,DAS D.Changes in optical and electrical phenomena correlated to structural configuration in nanocrystalline silicon network[J]. Journal of the Electrochemical Society, 2011, 158(11): H1138. [3] GAO D Z, LI Y, ZHANG B H, et al.Structural andphotoluminescence properties of nc-SiOx:H/a-SiOx:H multilayer films deposited at low temperature by VHF-PECVD technique[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(3): 806-812. [4] YANG J, JO H, CHOI S W, et al.Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system[J]. Journal of Materials Science & Technology, 2019, 35(8): 1563-1569. [5] DING K N, AEBERHARD U, SMIRNOV V, et al.Widegap microcrystalline silicon oxide emitter for a- SiOx:H/c-Si heterojunction solar cells[J]. Japanese Journal of Applied Physics, 2013, 52(12R): 122304. [6] TAN H R,BABAL P, ZEMAN M, et al.Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 132: 597-605. [7] RICHTER A, SMIRNOV V, LAMBERTZ A, et al.Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 174: 196-201. [8] DAS C, LAMBERTZ A,HUEPKES J, et al.A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells[J]. Applied Physics Letters, 2008, 92(5): 053509. [9] LAMBERTZ A, SMIRNOV V, MERDZHANOVA T, et al.Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules[J]. Solar Energy Materials and Solar Cells, 2013, 119: 134-143. [10] LAMBERTZ A, GRUNDLER T, FINGER F.Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells[J]. Journal of Applied Physics, 2011, 109(11):113109. [11] BEYER W.Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2003, 78(1/2/3/4): 235-267. [12] VET B, ZEMAN M.Relation between the open-circuit voltage and the band gap of absorber and buffer layers in a-Si:H solar cells[J]. Thin Solid Films, 2008, 516(20): 6873-6876. [13] JEON M, YOSHIBA S, KAMISAKO K.Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique[J]. Current Applied Physics, 2010, 10(2): S237-S240. [14] RUAN T, QU M H, WANG J Q, et al.Effect of deposition temperature of a-Si:H layer on the performance of silicon heterojunction solar cell[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13330-13335. [15] DAS D, BARUA A K.Properties of a-SiO:H films prepared by RF glow discharge[J]. Solar Energy Materials and Solar Cells, 2000, 60(2): 167-179. [16] LUNA-LÓPEZ J A, GARCÍA-SALGADO G, DÍAZ-BECERRIL T, et al. FTIR, AFM and PL properties of thin SiOx films deposited by HFCVD[J]. Materials Science and Engineering: B, 2010, 174(1/2/3): 88-92. [17] HE Y P, HUANG H B, ZHOU L, et al.Effect of substrate temperature and post-deposition annealing on intrinsic a-SiOx:H film for n-Cz-Si wafer passivation[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(5): 4659-4664. [18] WANG S, ZHANG X D, XIONG S Z, et al.Structural properties of a- SiOx:H films studied by an improved infrared-transmission analysis method[J]. Chinese Physics B, 2014, 23(9): 582-588. [19] TSU D V, LUCOVSKY G, DAVIDSON B N.Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system[J]. Physical Review B, Condensed Matter, 1989, 40(3): 1795-1805. [20] DAEY OUWENS J, SCHROPP R E.Hydrogen microstructure in hydrogenated amorphous silicon[J]. Physical Review B, Condensed Matter, 1996, 54(24): 17759-17762. [21] YOU J C, LIU H, QU M H, et al.Hydrogen-rich c-Si interfacial modification to obtain efficient passivation for silicon heterojunction solar cell[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(17): 14608-14613. [22] BEYER W, GHAZALA M S A. Absorption strengths of Si-H vibrational modes in hydrogenated silicon[J]. MRS Proceedings, 1998, 507: 601. [23] ZHAO L, ZHANG W B, CHEN J W, et al.Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solar cells at high pressure and high power[J]. Frontiers in Energy, 2017, 11(1): 85-91. [24] ZHAO L, DIAO H W, ZENG X B, et al.Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures[J]. Physica B: Condensed Matter, 2010, 405(1): 61-64. [25] KANEKO T, ONISAWA K I, WAKAGI M, et al.Crystalline fraction of microcrystalline silicon films prepared by plasma-enhanced chemical vapor deposition using pulsed silane flow[J]. Japanese Journal of Applied Physics, 1993, 32(Part 1, No. 11A): 4907-4911. |