[1] FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductorelectrode[J]. Nature, 1972, 238(5358): 37-38. [2] GRÄTZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. [3] CHO I S, LEE C H, FENG Y, et al.Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance[J]. Nature Communications, 2013, 4: 1723. [4] BACH U, LUPO D, COMTE P, et al.Solid-state dye-sensitizedmesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6702): 583-585. [5] GRÄTZEL M. Molecular photovoltaics that mimic photosynthesis[J]. Pure and Applied Chemistry, 2001, 73(3): 459-467. [6] HAGFELDT A, BOSCHLOO G, SUN L C, et al.Dye-sensitized solar cells[J]. Chemical Reviews, 2010, 110(11): 6595-6663. [7] YELLA A, LEE H W, TSAO H N, et al.Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056): 629-634. [8] CROSSLAND E J W, NOEL N, SIVARAM V, et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance[J]. Nature, 2013, 495(7440): 215-219. [9] CHUNG I, LEE B, HE J Q, et al.All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486-489. [10] WANG Z S, KAWAUCHI H, KASHIMA T, et al.Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coordination Chemistry Reviews, 2004, 248(13/14): 1381-1389. [11] LIU G, YANG H G, PAN J, et al.Titanium dioxide crystals with tailored facets[J]. Chemical Reviews, 2014, 114(19): 9559-9612. [12] OHNO T,SARUKAWA K, MATSUMURA M.Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions[J]. New Journal of Chemistry, 2002, 26(9): 1167-1170. [13] ANPO M, TAKEUCHI M.The design and development of highly reactive titanium oxidephotocatalysts operating under visible light irradiation[J]. Journal of Catalysis, 2003, 216(1/2): 505-516. [14] ZHANG J, XU Q, FENG Z C, et al.Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie, 2008, 120(9): 1790-1793. [15] YANG H G, SUN C H, QIAO S Z, et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195): 638-641. [16] LI T Y, TIAN B Z, ZHANG J L, et al.Facile tailoring of anatase TiO2 morphology by use of H2O2: from microflowers with dominant {101} facets to microspheres with exposed {001} facets[J]. Industrial & Engineering Chemistry Research, 2013, 52(20): 6704-6712. [17] WANG H E, CHEN Z H, LEUNG Y H, et al.Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates[J]. Applied Physics Letters, 2010, 96(26): 263104. [18] PAN J, WU X, WANG L, et al.Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells[J]. Chemical Communications (Cambridge, England), 2011, 47(29): 8361-8363. [19] LAZZERI M, VITTADINI A, SELLONI A.Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Physical Review B, 2001, 63(15): 155409. [20] ZHANG Q H, GAO L, GUO J K.Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis[J]. Applied Catalysis B: Environmental, 2000, 26(3): 207-215. [21] YANG X H, LI Z, LIU G, et al.Ultra-thinanatase TiO2nanosheets dominated with {001} facets: thickness-controlled synthesis, growth mechanism and water-splitting properties[J]. Cryst Eng Comm, 2011, 13(5): 1378-1383. |