JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (3): 578-586.
• Reviews • Previous Articles Next Articles
LIU Qichao1, ZHANG Hui2
Received:
2020-12-16
Online:
2021-03-15
Published:
2021-04-15
CLC Number:
LIU Qichao, ZHANG Hui. Research Progress of Low-Dimensional Group-VA Nanomaterials:from Structural Properties to Preparation Applications[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 578-586.
[1] NOVOSELOV K S, ANDREEVA D V, REN W C, et al.Graphene and other two-dimensional materials[J]. Frontiers of Physics, 2019, 14(1): 1-4. [2] 韩军凯,冯奕钰,封伟.掺杂石墨烯制备方法新进展[J].天津大学学报(自然科学与工程技术版),2020,53(5):467-474. HAN J K, FENG Y Y, FENG W.Recent research progress in doped-graphene preparation[J]. Journal of Tianjin University (Science and Technology), 2020, 53(5): 467-474(in Chinese). [3] 王鑫鑫. 石墨烯基异质结电子结构及铋烯的结构生长研究[D].南京:南京大学,2019. WANG X X.Investigations on electronic structures of graphene based heterostructures and the structural growth of bismuthene[D]. Nanjing: Nanjing University, 2019(in Chinese). [4] GOH E, CHIN H C, WONG K L, et al.Modeling and simulation of the electronic properties in graphene nanoribbons of varying widths and lengths using tight-binding Hamiltonian[J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13(2): 289-300. [5] 陈文强. 基于石墨烯带隙调控及拉曼光谱的分析研究[D].西安:西安理工大学,2018. CHEN W Q.Theoretical studies of the govering band gap and Raman scattering in graphene[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese). [6] REN X L, LIAN P C, XIE D L, et al.Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review[J]. Journal of Materials Science, 2017, 52(17): 10364-10386. [7] AMARAL P E M, NIEMAN G P, SCHWENK G R, et al. High electron mobility of amorphous red phosphorus thin films[J]. Angewandte Chemie International Edition, 2019, 58(20): 6766-6771. [8] ZHANG Y C, JIANG Q Q, LANG P, et al.Fabrication and applications of 2D black phosphorus in catalyst, sensing and electrochemical energy storage[J]. Journal of Alloys and Compounds, 2021, 850: 156580. [9] ZHANG S, GUO S, CHEN Z, et al.Recent progress in 2D group-VA semiconductors: from theory to experiment[J]. Chemical Society Reviews, 2018, 47(3): 982-1021. [10] BELADI-MOUSAVI S M, POURRAHIMI A M, SOFER Z, et al. Atomically thin 2D-arsenene by liquid-phased exfoliation: toward selective vapor sensing[J]. Advanced Functional Materials, 2019, 29(5): 1807004. [11] GIBAJA C, RODRIGUEZ-SAN-MIGUEL D, ARES P, et al. Few-layer antimonene by liquid-phase exfoliation[J]. Angewandte Chemie International Edition, 2016, 55(46): 14345-14349. [12] CAI X Y, CHEN Y Z, SUN B, et al.Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties[J]. Nanoscale, 2019, 11(17): 8260-8269. [13] GUO S Y, ZHOU W H, CAI B, et al.Band engineering realized by chemical combination in 2D group VA-VA materials[J]. Nanoscale Horizons, 2019, 4(5): 1145-1152. [14] ZHAO A L, LI H, HU X J, et al.Review of 2D group VA material-based heterostructures[J]. Journal of Physics D: Applied Physics, 2020, 53(29): 293002. [15] GALLUZZI M, ZHANG Y L, YU X F.Mechanical properties and applications of 2D black phosphorus[J]. Journal of Applied Physics, 2020, 128(23): 230903. [16] SUN Y, WANG L Y, WANG C Y, et al.Mechanical properties of 2D blue phosphorus and temperature effect[J]. Nanotechnology, 2021, 32(8): 085702. [17] ZHU Z, TOMÁNEK D. Semiconducting layered blue phosphorus: a computational study[J]. Physical Review Letters, 2014, 112(17): 176802. [18] ZHANG S L, XIE M Q, LI F Y, et al.Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities[J]. Angewandte Chemie International Edition, 2016, 55(5): 1666-1669. [19] 王靖辉,朱国安,谢中静,等.四种新型磷烯电子结构及光学性质的第一性原理研究[J].中国科学:物理学力学天文学,2018,48(5):69-79. WANG J H, ZHU G A, XIE Z J, et al.First-principles studies electronic structures and optical properties of four new phosphorene polymorphs[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(5): 69-79(in Chinese). [20] QIAO J S, KONG X H, HU Z X, et al.High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475. [21] 李兵. 蓝磷及相关结构的电子性质研究和能带调控[D].济南:济南大学,2019. LI B.Study of electric properties and band control for the blue phosphorene and related structures[D]. Jinan: University of Jinan, 2019(in Chinese). [22] 曹宝月,崔孝炜,乔成芳,等.再谈磷的同素异形体:磷纳米材料和磷烯[J].化学教育,2020,41(20):11-31. CAO B Y, CUI X W, QIAO C F, et al.The allotropes of the phosphorus: phosphorus nanomaterials and phosphene[J]. Chinese Journal of Chemical Education, 2020, 41(20): 11-31(in Chinese). [23] KONABE S, YAMAMOTO T.Significant enhancement of the thermoelectric performance of phosphorene through the application of tensile strain[J]. Applied Physics Express, 2015, 8(1): 015202. [24] 黄雅歆,张胜利,郭诗颖,等.第五主族材料:从三维到单层材料[J].科学通报,2017,62(20):2233-2251. HUANG Y X, ZHANG S L, GUO S Y, et al.Group V materials: from bulk to monolayer[J]. Chinese Science Bulletin, 2017, 62(20): 2233-2251(in Chinese). [25] LIU Q H, ZHANG X W, ABDALLA L B, et al.Switching a normal insulator into a topological insulator via electric field with application tophosphorene[J]. Nano Letters, 2015, 15(2): 1222-1228. [26] ISLAND J O, STEELE G A, VAN DER ZANT H S J, et al. Environmental instability of few-layer black phosphorus[J]. 2D Materials, 2015, 2(1): 011002. [27] KOU L Z, MA Y D, TAN X, et al.Structural and electronic properties of layered arsenic and antimony arsenide[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6918-6922. [28] IORDANIDOU K, KIOSEOGLOU J, AFANAS'EV V V, et al. Intrinsic point defects in buckled and puckered arsenene: a first-principles study[J]. Physical Chemistry Chemical Physics, 2017, 19(15): 9862-9871. [29] YUAN S F, SHEN C F, DENG B C, et al.Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures[J]. Nano Letters, 2018, 18(5): 3172-3179. [30] ZHANG S L, YAN Z, LI Y F, et al.Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie International Edition, 2015, 54(10): 3112-3115. [31] AKTÜRK E, AKTÜRK O Ü, CIRACI S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties[J]. Physical Review B, 2016, 94: 014115. [32] KECIK D, DURGUN E, CIRACI S.Stability of single-layer and multilayer arsenene and their mechanical and electronic properties[J]. Physical Review B, 2016, 94(20): 205409. [33] ZHANG S, GUO S, CHEN Z, et al.Recent progress in 2D group-VA semiconductors: from theory to experiment[J]. Chemical Society Reviews, 2018, 47(3): 982-1021. [34] BRENT J R, SAVJANI N, LEWIS E A, et al.Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications (Cambridge, England), 2014, 50(87): 13338-13341. [35] 张晓萍,李晓燕,牛燕燕,等.黑磷烯的制备及其在传感检测中的研究进展[J].海南师范大学学报(自然科学版),2019,32(4):355-361. ZHANG X P, LI X Y, NIU Y Y, et al.Research progresses of preparation and sensing application of black phosphorene[J]. Journal of Hainan Normal University (Natural Science), 2019, 32(4): 355-361(in Chinese). [36] LU W L, NAN H Y, HONG J H, et al.Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 2014, 7(6): 853-859. [37] ARES P, AGUILAR-GALINDO F, RODRÍGUEZ-SAN-MIGUEL D, et al. Mechanical isolation of highly stable antimonene under ambient conditions[J]. Advanced Materials, 2016, 28(30): 6332-6336. [38] ZHAO J, LIU C Y, GUO W L, et al.Prediction on the light-assisted exfoliation of multilayered arsenene by the photo-isomerization of azobenzene[J]. Nanoscale, 2017, 9(21): 7006-7011. [39] TSAI H S, CHEN C W, HSIAO C H, et al.The advent of multilayer antimonene nanoribbons with room temperature orange light emission[J]. Chemical Communications (Cambridge, England), 2016, 52(54): 8409-8412. [40] LU L, TANG X, CAO R, et al.Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J]. Advanced Optical Materials, 2017, 5(17): 1700301. [41] TSAI H S, WANG S W, HSIAO C H, et al.Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons[J]. Chemistry of Materials, 2016, 28(2): 425-429. [42] REIS F, LI G, DUDY L, et al.Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material[J]. Science, 2017, 357(6348): 287-290. [43] SUN H H, WANG M X, ZHU F F, et al.Coexistence of topological edge state and superconductivity in bismuth ultrathin film[J]. Nano Letters, 2017, 17(5): 3035-3039. [44] 胡毅. 第V主族二维材料砷烯和铋烯的可控制备及光电性质研究[D].南京:南京大学,2019. HU Y.The controllable synthesises and photoelectric properties of group-VA two-dimensional materials: arsenene and bismuthene[D]. Nanjing: Nanjing University, 2019(in Chinese). [45] WU X, SHAO Y, LIU H, et al.Epitaxial growth and air-stability of monolayer antimonene on PdTe2[J]. Advanced Materials, 2017, 29(11): 1605407. [46] HUSSAIN N, LIANG T X, ZHANG Q Y, et al.Ultrathin Bi nanosheets with superior photoluminescence[J]. Small, 2017, 13(36): 1701349. [47] KOENIG S P, DOGANOV R A, SCHMIDT H, et al.Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 2014, 104(10): 103106. [48] FENG Q L, LIU H Y, ZHU M J, et al.Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9679-9687. [49] LIU J M, CHEN Y, LI Y, et al.Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber[J]. Photonics Research, 2018, 6(3): 198-203. [50] KUMAR V, BRENT J R, SHORIE M, et al.Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22860-22868. [51] KOU L Z, FRAUENHEIM T, CHEN C F.Phosphorene as a superior gas sensor: selective adsorption and distinct [52] ZHANG H P, KOU L Z, JIAO Y, et al.Strain engineering of selective chemical adsorption on monolayer black phosphorous[J]. Applied Surface Science, 2020, 503: 144033. [53] ABBAS A N, LIU B L, CHEN L, et al.Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5): 5618-5624. [54] MAKHA M, GHAILANE A, LARHLIMI H, et al.Emerging opportunities for 2D-black phosphorus as a carrier transporting material in perovskite solar cells[J]. Materials Letters, 2020, 276: 128234. [55] SONG T, HOU L Q, LONG B, et al.Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2021, 584: 474-483. [56] ZHENG Y, CHEN Y L, WANG L, et al.Metal-free 2D/2D heterostructured photocatalyst of black phosphorus/covalent triazine-based frameworks for water splitting and pollutant degradation[J]. Sustainable Energy & Fuels, 2020, 4(7): 3739-3746. [57] WANG Q, LI B H, ZHANG P, et al.2D black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light[J]. RSC Advances, 2020, 10(46): 27538-27551. [58] LI X Y, XIAO L P, ZHOU L, et al.Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @2D black phosphorus for overall water splitting[J]. Angewandte Chemie (International Ed in English), 2020, 59(47): 21106-21113. [59] LANG J Y, HU Y H.Phosphorus-based metal-free Z-scheme 2D van der Waals heterostructures for visible-light photocatalytic water splitting: a first-principles study[J]. Physical Chemistry Chemical Physics, 2020, 22(17): 9250-9256. [60] CHENG L, CAI Z W, ZHAO J W, et al.Black phosphorus-based 2D materials for bone therapy[J]. Bioactive Materials, 2020, 5(4): 1026-1043. [61] PIZZI G, GIBERTINI M, DIB E, et al.Performance of arsenene and antimonene double-gate MOSFETs from first principles[J]. Nature Communications, 2016, 7: 12585. [62] WANG Y Y, HUANG P, YE M, et al.Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene[J]. Chemistry of Materials, 2017, 29(5): 2191-2201. [63] MARTÍNEZ-PERIÑÁN E, DOWN M P, GIBAJA C, et al. Antimonene: a novel 2D nanomaterial for supercapacitor applications[J]. Advanced Energy Materials, 2018, 8(11): 1702606. [64] MENG R S, CAI M, JIANG J K, et al.First principles investigation of small molecules adsorption on antimonene[J]. IEEE Electron Device Letters, 2017, 38(1): 134-137. [65] REIS F, LI G, DUDY L, et al.Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material[J]. Science, 2017, 357(6348): 287-290. |
[1] | CHEN Wangyibo, XU Yu, CAO Bing, XU Ke. Epitaxial Laterally Overgrown Free-Standing GaN through HVPE by Wide-Period Mask Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 416-420. |
[2] | SHAO Kaiheng, XIA Songyuan, ZHANG Yumin, WANG Jianfeng, XU Ke. Impurities of Homoepitaxy Interface on Bulk GaN Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 441-446. |
[3] | LIU Guofeng, ZUO Ran. Quantum Chemistry Study on Gas Reactions Involved with Radicals in GaN-MOVPE Process [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 469-476. |
[4] | ZHANG Yumin;WANG Jianfeng;CAI Demin;XU Yu;WANG Mingyue;HU Xiaojian;XU Lin;XU Ke. Progress on GaN Single Crystal Substrate Grown by Hydride Vapor Phase Epitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(11): 1970-1983. |
[5] | JIANG Yuanxi;LIU Nanliu;ZHANG Fabi;WANG Qi;ZHANG Guoyi. Development and Trends of GaN Single Crystal Substrate Fabrication Technology [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(11): 2038-2045. |
[6] | FENG Gan, SUN Yongqiang, QIAN Weining, CHEN Zhixia. Progress in Homoepitaxial Growth of 4H-SiC Semiconductor [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(11): 2128-2138. |
[7] | CHENG Hongjuan, JIN Lei, WU Honglei, QI Haitao, WANG Zenghua, SHI Yuezeng, ZHANG Li. Growth Behavior of AlN Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(11): 2200-2205. |
[8] | HU Jichao;WANG Xi;JIA Renxu;PU Hongbin;CHEN Zhiming. New Type of Triangular Defects in 4H-SiC 4°Off-Axis Homoepitaxial Layers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(11): 2206-2210. |
[9] | HU Dewei;TANG Anjiang;TANG Shiyun;WEI Deju;TIAN Hexin. Research Progress on Preparation and Application of Silicon Nanowires [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(9): 1743-1751. |
[10] | LIU Huan;ZHU Ruzhong;GONG Jianchao;WANG Qikun;FU Danyang;LEI Dan;HUANG Jiali;WU Liang. Effect of High Temperature Annealing on Sapphire-based Aluminum Nitride Templates Fabricated by DC Reactive Magnetron Sputtering [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(8): 1541-1547. |
[11] | ZHOU Hao;XU Yu;CAO Bing;XU Ke;WANG Chinhua. Orientation Evolution Study of Epitaxial GaN Films on Graphene [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(5): 794-798. |
[12] | LIU Bing;PU Hongbin;ZHAO Ran;ZHAO Ziqiang;BAO Huiqiang;LI Longyuan;LI Jin;LIU Sujuan. Study on the Growth of High Quality 6-Inch N-type 4H-SiC Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(4): 570-575. |
[13] | JIN Guo;ZHU Qingzhi. Study on the Application of p-type GaSb Window Layer in Thermophotovoltaic Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(4): 638-645. |
[14] | LAN Tianping;BIAN Yiwu;ZHOU Chunfeng;SONG Yu. Study on EL2 Concentration Optimization of VGF Semi-insulating Gallium Arsenide Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(3): 412-416. |
[15] | HE Haiying;FENG Qiuyu;CHEN Yu;YANG Zhihao. First-principles Study on Mg-N Cation-anion Co-doped SnO2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(2): 234-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||