[1] OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991): 528-531. [2] JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952): 1057-1061. [3] SHAO Z Z, VOLLRATH F. Surprising strength of silkworm silk[J]. Nature, 2002, 418(6899): 741. [4] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9): 991-1007. [5] KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46: 86-110. [6] ROCKWOOD D N, PREDA R C, YÜCEL T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nat Protoc, 2011, 6(10): 1612-1631. [7] KIM U J, PARK J, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004, 5(3): 786-792. [8] ZHU B W, WANG H, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials, 2016, 28(22): 4250-4265. [9] SHI C, HU F, WU R, et al. Cocoon silk materials: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics[J]. Adv Mater, 2021, DOI: 10.1002/adma.202005910. [10] HU F, LIN N B, LIU X Y. Interplay between light and functionalized silk fibroin and applications[J]. iScience, 2020, 23(4): 101035. [11] MA L Y, LIU Q, WU R H, et al. From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring[J]. Small, 2020, 16(26): 2000203. [12] SHI C Y, WANG J J, SUSHKO M L, et al. Silk flexible electronics: from bombyx mori silk Ag nanoclusters hybrid materials to mesoscopic memristors and synaptic emulators[J]. Advanced Functional Materials, 2019, 29(42): 1904777. [13] LIN N B, LIU X Y. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles[J]. Chemical Society Reviews, 2015, 44(21): 7881-7915. [14] XU G, GONG L, YANG Z, et al. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures[J]. Soft Matter, 2014, 10(13): 2116-2123. [15] QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019, 15(51): 1903948. [16] NGUYEN A T, HUANG Q L, YANG Z, et al. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance[J]. Small, 2015, 11(9/10): 1039-1054. [17] QIU W, LIU X Y. Cocoon silk: from mesoscopic materials design to engineering principles and applications[M]//Frontiers and Progress of Current Soft Matter Research. Singapore: Springer Singapore, 2020: 241-298. [18] DU N, LIU X Y, NARAYANAN J, et al. Design of superior spider silk: from nanostructure to mechanical properties[J]. Biophysical Journal, 2006, 91(12): 4528-4535. [19] CHEN X, SHAO Z Z, MARINKOVIC N S, et al. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy[J]. Biophysical Chemistry, 2001, 89(1): 25-34. [20] LIU R C, DENG Q Q, YANG Z, et al. “Nano-fishnet” structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30): 5534-5541. [21] ROGERS J A, SOMEYA T, HUANG Y G. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603-1607. [22] XU C H, YANG Y R, GAO W. Skin-interfaced sensors in digital medicine: from materials to applications[J]. Matter, 2020, 2(6): 1414-1445. [23] WANG S H, XU J, WANG W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88. [24] HOROWITZ G. Organic field-effect transistors[J]. Advanced Materials, 1998, 10(5): 365-377. [25] LI J L, ZHANG Z S, LIU X Y. Chapter 4. effects of kinetics on structures of aggregates leading to fibrillar networks[M]//Monographs in Supramolecular Chemistry. Cambridge: Royal Society of Chemistry, 2018: 88-128. [26] DU N,YANG Z,LIU X Y,et al.Structural origin of the strain-hardening of spider silk[J].Advanced Functional Materials,2011,21(4):772-778. [27] VOLLRATH F, KNIGHT D P. Liquid crystalline spinning of spider silk[J]. Nature, 2001, 410(6828): 541-548. [28] LIN N B, HU F, SUN Y L, et al. Construction of white-light-emitting silk protein hybrid films by molecular recognized assembly among hierarchical structures[J]. Advanced Functional Materials, 2014, 24(33): 5284-5290. [29] ZHANG T H, LIU X Y. Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly[J]. Chemical Society Reviews, 2014, 43(7): 2324-2347. [30] JIA Y W, LIU X Y. Self-assembly of protein at aqueous solution surface in correlation to protein crystallization[J]. Applied Physics Letters, 2005, 86(2): 023903. [31] CHEN Z W, ZHANG H H, LIN Z F, et al. Programing performance of silk fibroin materials by controlled nucleation[J]. Advanced Functional Materials, 2016, 26(48): 8978-8990. [32] XIONG R, KIM H S, ZHANG S D, et al. Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport[J]. ACS Nano, 2017, 11(12): 12008-12019. [33] LING S J, LI C X, ADAMCIK J, et al. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites[J]. ACS Macro Letters, 2014, 3(2): 146-152. [34] LIN N B, CAO L W, HUANG Q L, et al. Functionalization of silk fibroin materials at mesoscale[J]. Advanced Functional Materials, 2016, 26(48): 8885-8902. [35] CAI L Y, SHAO H L, HU X C, et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2551-2557. [36] LI K, ZHAO J L, ZHANG J J, et al. Direct in vivo functionalizing silkworm fibroin via molecular recognition[J]. ACS Biomaterials Science & Engineering, 2015, 1(7): 494-503. [37] XING Y, SHI C Y, ZHAO J H, et al. Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse[J]. Small, 2017, 13(40): 1702390. [38] SHI W, SUN M, HU X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Advanced Materials, 2017, 29(29): 1701089. [39] LING S, QIN Z, HUANG W, et al. Design and function of biomimetic multilayer water purification membranes[J]. Science Advances, 2017, 3(4): e1601939. [40] LIN N B, MENG Z H, TOH G W, et al. Engineering of fluorescent emission of silk fibroin composite materials by material assembly[J]. Small, 2015, 11(9/10): 1205-1214. [41] HUANG J N, XU Z J, QIU W, et al. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation[J]. Advanced Functional Materials, 2020, 30(13): 1910547. [42] BRESSNER J E, MARELLI B, QIN G K, et al. Rapid fabrication of silk films with controlled architectures via electrogelation[J]. Journal of Materials Chemistry B, 2014, 2(31): 4983. [43] JIANG C, WANG X, GUNAWIDJAJA R, et al. Mechanical properties of robust ultrathin silk fibroin films[J]. Advanced Functional Materials, 2007, 17(13): 2229-2237. [44] WANG X Y, KIM H J, XU P, et al. Biomaterial coatings by stepwise deposition of silk fibroin[J]. Langmuir, 2005, 21(24): 11335-11341. [45] TU H, YU R, LIN Z F, et al. Programing performance of wool keratin and silk fibroin composite materials by mesoscopic molecular network reconstruction[J]. Advanced Functional Materials, 2016, 26(48): 9032-9043. [46] YIN J W, CHEN E Q, PORTER D, et al. Enhancing the toughness of regenerated silk fibroin film through uniaxial extension[J]. Biomacromolecules, 2010, 11(11): 2890-2895. [47] CHEN X, SHAO Z Z, KNIGHT D P, et al. Conformation transition kinetics of Bombyx mori silk protein[J]. Proteins: Structure, Function, and Bioinformatics, 2007, 68(1): 223-231. |