JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (4): 685-707.
• Reviews • Previous Articles Next Articles
WANG Zeyan, WANG Peng, LIU Yuanyuan, ZHENG Zhaoke, CHENG Hefeng, HUANG Baibiao
Received:
2021-03-03
Online:
2021-04-15
Published:
2021-05-21
CLC Number:
WANG Zeyan, WANG Peng, LIU Yuanyuan, ZHENG Zhaoke, CHENG Hefeng, HUANG Baibiao. Design and Synthesis of Efficient Photocatalyst Based on the Principal of Crystallography[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 685-707.
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. [2] KATO H, ASAKURA K, KUDO A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of the American Chemical Society, 2003, 125(10): 3082-3089. [3] ZOU Z, YE J, SAYAMA K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627. [4] WANG Z, LIU Y, HUANG B, et al. Progress on extending the light absorption spectra of photocatalysts[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 2758-2774. [5] WANG Z Y, HUANG B B, DAI Y, et al. Relationship between microstructure and photocatalytic properties of nanomaterials[J]. Zeitschrift Für Kristallographie, 2010, 225(11): 520-527. [6] LOU Z Z, WANG Z Y, HUANG B B, et al. Synthesis and activity of plasmonic photocatalysts[J]. Chem Cat Chem, 2014, 6(9): 2456-2476. [7] MAEDA K, TAKATA T, HARA M, et al. GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of the American Chemical Society, 2005, 127(23): 8286-8287. [8] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96. [9] ZHANG H J, CHEN G H, BAHNEMANN D W. Photoelectrocatalytic materials for environmental applications[J]. Journal of Materials Chemistry, 2009, 19(29): 5089. [10] LAN M H, ZHAO S J, LIU W M, et al. Photosensitizers for photodynamic therapy[J]. Advanced Healthcare Materials, 2019, 8(13): 1900132. [11] WANG P, HUANG B, DAI Y, et al. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles[J]. Physical Chemistry Chemical Physics, 2012, 14(28): 9813-9825. [12] ZHENG Z K, XIE W, HUANG B B, et al. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts[J]. Chemistry - A European Journal, 2018, 24(69): 18322-18333. [13] CHOI W, TERMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J]. The Journal of Physical Chemistry, 1994, 98(51): 13669-13679. [14] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. [15] OHNO T, AKIYOSHI M, UMEBAYASHI T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A: General, 2004, 265(1): 115-121. [16] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. [17] YANG M, JIN X Q. Facile synthesis of Zn2GeO4 nanorods toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel[J]. Journal of Central South University, 2014, 21(7): 2837-2842. [18] YAN S C, OUYANG S X, GAO J, et al. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2[J]. Angewandte Chemie, 2010, 122(36): 6544-6548. [19] JIA H M, XU H, HU Y, et al. TiO2@CdS core-shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties[J]. Electrochemistry Communications, 2007, 9(3): 354-360. [20] LU Z Z, XU J, XIE X, et al. CdS/CdSe double-sensitized ZnO nanocable arrays synthesized by chemical solution method and their photovoltaic applications[J]. The Journal of Physical Chemistry C, 2012, 116(4): 2656-2661. [21] XIE S L, LU X H, ZHAI T, et al. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity[J]. Langmuir, 2012, 28(28): 10558-10564. [22] BAVYKIN D, FRIEDRICH J, WALSH F. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications[J]. Advanced Materials, 2006, 18(21): 2807-2824. [23] KUMAR S G, DEVI L G. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics[J]. The Journal of Physical Chemistry A, 2011, 115(46): 13211-13241. [24] FANG J, CAO S W, WANG Z, et al. Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction[J]. International Journal of Hydrogen Energy, 2012, 37(23): 17853-17861. [25] WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie, 2008, 120(41): 8049-8051. [26] WANG P, HUANG B B, ZHANG X Y, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr[J]. Chemistry-A European Journal, 2009, 15(8): 1821-1824. [27] WANG P, HUANG B B, ZHANG Q Q, et al. Highly efficient visible-light plasmonic photocatalyst Ag@Ag(Br,I)[J]. Chemistry - A European Journal, 2009, 16(33): 10042-10047. [28] TANG Y, JIANG Z, DENG J, et al. Synthesis of nanostructured silver/silver halides on titanate surfaces and their visible-light photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2012, 4(1): 438-446. [29] AWAZU K, FUJIMAKI M, ROCKSTUHL C, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society, 2008, 130(5): 1676-1680. [30] CHEN K H, PU Y C, CHANG K D, et al. Ag-nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties[J]. The Journal of Physical Chemistry C, 2012, 116(35): 19039-19045. [31] JIANG L M, ZHOU G, MI J, et al. Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst[J]. Catalysis Communications, 2012, 24: 48-51. [32] SEH Z W, LIU S H, LOW M, et al. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation[J]. Advanced Materials, 2012, 24(17): 2310-2314. [33] ZHANG Z J, WANG W Z, GAO E P, et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2012, 116(49): 25898-25903. [34] ZHENG Z, TACHIKAWA T, MAJIMA T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region[J]. Journal of the American Chemical Society, 2014, 136(19): 6870-6873. [35] ZHENG Z K, TACHIKAWA T, MAJIMA T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level[J]. Journal of the American Chemical Society, 2015, 137(2): 948-957. [36] CHENG H F, WEN M C, MA X C, et al. Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances[J]. Journal of the American Chemical Society, 2016, 38(29): 9316-9324. [37] CHEN X B, LIU L, HUANG F Q. Black titanium dioxide (TiO2) nanomaterials[J]. Chemical Society Reviews, 2015, 44(7): 1861-1885. [38] LI Y X, WEN M M, WANG Y, et al. Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3-x[J]. Angewandte Chemie International Edition, 2021, 60(2): 910-916. [39] ZHANG L W, FU H B, ZHU Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon[J]. Advanced Functional Materials, 2008, 18(15): 2180-2189. [40] QIN W P, ZHANG D S, ZHAO D, et al. Near-infrared photocatalysis based on YF3:Yb3+, Tm3+/TiO2 core/shell nanoparticles[J]. Chemical Communications (Cambridge, England), 2010, 46(13): 2304-2306. [41] YI G S, LU H C, ZHAO S Y, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors[J]. Nano Letters, 2004, 4(11): 2191-2196. [42] HUANG H N, LI H L, WANG Z Y, et al. Efficient near-infrared photocatalysts based on NaYF4:Yb3+, Tm3+@NaYF4: Yb3+, Nd3+@TiO2 core@shell nanoparticles[J]. Chemical Engineering Journal, 2019, 361: 1089-1097. [43] HUANG H N, WANG Z Y, HUANG B B, et al. Intense single red emission induced by near-infrared irradiation using a narrow bandgap oxide BiVO4 as the host for Yb3+ and Tm3+ ions[J]. Advanced Optical Materials, 2018, 6(15): 1701331. [44] XU Z H, QUINTANILLA M, VETRONE F, et al. Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au[J]. Advanced Functional Materials, 2015, 25(20): 2950-2960. [45] YANG Y W, QUE W X, ZHANG X Y, et al. High-quality Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals hybrid with ZnO and NaYF4:Yb, Tm as efficient photocatalytic sensitizers[J]. Applied Catalysis B: Environmental, 2017, 200: 402-411. [46] TANG Y N, DI W H, ZHAI X S, et al. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2 core-shell nanoparticles[J]. ACS Catalysis, 2013, 3(3): 405-412. [47] WANG W J, LI Y C, KANG Z W, et al. A NIR-driven photocatalyst based on α-NaYF4:Yb, Tm@TiO2 core-shell structure supported on reduced graphene oxide[J]. Applied Catalysis B: Environmental, 2016, 182: 184-192. [48] LI M H, ZHENG Z J, ZHENG Y Q, et al. Controlled growth of metal-organic framework on upconversion nanocrystals for NIR-enhanced photocatalysis[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2899-2905. [49] HUANG H N, LIANG X Z, WANG Z Y, et al. Bi20TiO32 nanoparticles doped with Yb3+ and Er3+ as UV, visible, and near-infrared responsive photocatalysts[J]. ACS Applied Nano Materials, 2019, 2(9): 5381-5388. [50] WANG G, HUANG B B, MA X C, et al. Cu2(OH)PO4, a near-infrared-activated photocatalyst[J]. Angewandte Chemie International Edition, 2013, 52(18): 4810-4813. [51] LI Z J, DAI Y, MA X C, et al. Tuning photocatalytic performance of the near-infrared-driven photocatalyst Cu2(OH)PO4 based on effective mass and dipole moment[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3267. [52] STEPHEN K R. Copper claims first as near infrared photocatalyst[J]. Chemical and Engineering News, 2013, 91: 36. [53] WANG G, HUANG B B, LI Z J, et al. On structural features necessary for near-IR-light photocatalysts[J]. Chemistry-A European Journal, 2015, 21(39): 13583-13587. [54] NGUYEN S D, YEON J, KIM S H, et al. BiO(IO3): a new polar iodate that exhibits an aurivillius-type (Bi2O2)2+layer and a large SHG response[J]. Journal of the American Chemical Society, 2011, 133(32): 12422-12425. [55] WANG W J, HUANG B B, MA X C, et al. Efficient separation of photogenerated electron-hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates[J]. Chemistry-A European Journal, 2013, 19(44): 14777-14780. [56] ZHANG R, DAI Y, LOU Z Z, et al. Layered photocatalyst Bi2O2[BO2(OH)] nanosheets with internal polar field enhanced photocatalytic activity[J]. CrystEngComm, 2014, 16(23): 4931-4934. [57] JIANG Z, LIU Y, LI M, et al. One-pot solvothermal synthesis of Bi4V2O11 as a new solar water oxidation photocatalyst[J]. Sci Rep, 2016, 6: 22727. [58] LOU Z Z, HUANG B B, WANG Z Y, et al. Ag6Si2O7: a silicate photocatalyst for the visible region[J]. Chemistry of Materials, 2014, 26(13): 3873-3875. [59] ZHU X L, WANG Z Y, HUANG B B, et al. Synthesis of Ag9(SiO4)2NO3 through a reactive flux method and its visible-light photocatalytic performances[J]. APL Materials, 2015, 3(10): 104413. [60] ZHU X L, WANG P, LI M M, et al. Novel high-efficiency visible-light responsive Ag4(GeO4) photocatalyst[J]. Catalysis Science & Technology, 2017, 7(11): 2318-2324. [61] XU B Y, AN Y, LIU Y Y, et al. An efficient visible-light photocatalyst made from a nonpolar layered semiconductor by grafting electron-withdrawing organic molecules to its surface[J]. Chemical Communications (Cambridge, England), 2016, 52(92): 13507-13510. [62] XU B Y, AN Y, LIU Y Y, et al. Enhancing the photocatalytic activity of BiOX (X=Cl, Br, and I), (BiO)2CO3 and Bi2O3 by modifying their surfaces with polar organic anions, 4-substituted thiophenolates[J]. Journal of Materials Chemistry A, 2017, 5(27): 14406-14414. [63] SONG X H, WANG J J, ZHANG R Q, et al. Polar molecular modification onto BiOBr to regulate molecular oxygen activation[J]. The Journal of Physical Chemistry C, 2019, 123(25): 15599-15605. [64] BAI S, WANG L L, LI Z Q, et al. Facet-engineered surface and interface design of photocatalytic materials[J]. Advanced Science, 2017, 4(1): 1600216. [65] ZHENG Z K, HUANG B B, WANG Z Y, et al. Crystal faces of Cu2O and their stabilities in photocatalytic reactions[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14448-14453. [66] GAO Y G, WU Q, LIANG X Z, et al. Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene[J]. Advanced Science, 2020, 7(6): 1902820. [67] ZHENG Z K, HUANG B B, QIN X Y, et al. Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets[J]. Chemistry - A European Journal, 2009, 15(46): 12576-12579. [68] ZHENG Z K, HUANG B B, LU J B, et al. Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity[J]. Chemistry-A European Journal, 2011, 17(52): 15032-15038. [69] WANG Z Y, HUANG B B, DAI Y, et al. Crystal facets controlled synthesis of graphene@TiO2 nanocomposites by a one-pot hydrothermal process[J]. CrystEngComm, 2012, 14(5): 1687-1692. [70] NI G D, LI Y Q, CHEN H M, et al. The Sol-gel method synthesis of Bi4NbO8Cl with (001) facets exposed for high visible-light activity[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(8): 7907-7915. [71] WANG G, MA X C, HUANG B B, et al. Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities[J]. Journal of Materials Chemistry, 2012, 22(39): 21189-21194. [72] LOU Z, HUANG B, QIN X, et al. One-step synthesis of AgCl concave cubes by preferential overgrowth along and directions[J]. Chemical Communications (Cambridge, England), 2012, 48(29): 3488-3490. [73] LI H L, ZHANG B, WANG Z Y, et al. Endotaxial growth of [100]-oriented TaON films on LiTaO3 single crystals for enhanced photoelectrochemical water splitting[J]. Solar RRL, 2018, 2(6): 1700243. [74] WANG P, HUANG B B, LOU Z Z, et al. Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures[J]. Chemistry-A European Journal, 2010, 16(2): 538-544. [75] CHENG H F, HUANG B B, WANG P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications, 2011, 47(25): 7054-7056. [76] LOU Z Z, HUANG B B, MA X C, et al. A 3D AgCl hierarchical superstructure synthesized by a wet chemical oxidation method[J]. Chemistry-A European Journal, 2012, 18(50): 16090-16096. [77] LOU Z Z, HUANG B B, WANG Z Y, et al. Fast-generation of Ag3PO4 concave microcrystals from electrochemical oxidation of bulk silver sheet[J]. CrystEngComm, 2013, 15(25): 5070. [78] ZHENG Z K, HUANG B B, QIN X Y, et al. Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity[J]. Chemistry-A European Journal, 2010, 16(37): 11266-11270. [79] WANG X N, HUANG B B, WANG Z Y, et al. Synthesis of anatase TiO2 tubular structures microcrystallites with a high percentage of {001} facets by a simple one-step hydrothermal template process[J]. Chemistry-A European Journal, 2010, 16(24): 7106-7109. [80] WANG S Y, ZHENG Z K, HUANG B B, et al. Enhanced photocatalytic H2 production on hierarchical rutile TiO2 microspheres[J]. RSC Advances, 2013, 3(15): 5156-5161. [81] CHENG H F, HUANG B B, WANG Z Y, et al. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity[J]. Chemistry-A European Journal, 2011, 17(29): 8039-8043. [82] YAO S S, WEI J Y, HUANG B B, et al. Morphology modulated growth of bismuth tungsten oxide nanocrystals[J]. Journal of Solid State Chemistry, 2009, 182(2): 236-239. [83] LIANG X Z, WANG P, TONG F X, et al. Bias-free solar water splitting by tetragonal zircon BiVO4 nanocrystal photocathode and monoclinic scheelite BiVO4 nanoporous photoanode[J]. Advanced Functional Materials, 2021, 31(8): 2008656. [84] ZHANG H P, LI H L, WANG Z Y, et al. Fabrication of BiVO4 photoanode consisted of mesoporous nanoparticles with improved bulk charge separation efficiency[J]. Applied Catalysis B: Environmental, 2018, 238: 586-591. |
[1] | YE Shiya, LI Duan, LI Junsheng, ZENG Liang, CAO Feng. Research Progress on Rare-Earth Perovskite Oxynitrides [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(1): 187-198. |
[2] | HE Xiao-yu;LI Chun-xia. Synthesis of Three-dimensional Ag2O/WO3 and Investigation of Its Photocatalytic Activity [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1575-1579. |
[3] | SU Shuai;XU Qing;FAN Dong-mei;ZHAI Chun-yang. Preparation of Mesoporous Carbon-loaded Ce-TiO2 and Its Photocatalytic Degradation of Methylene Blue [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1580-1586. |
[4] | HAO Yan-yan;ZHANG Ying;ZHAO Lin. Fabrication of ZnO-SiO2 and Its Photocatalytic Degradation of Rhodamine B [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(7): 1379-1384. |
[5] | HAO Yan-yan;ZHANG Ying;ZHAO Lin;YAN Song. Preparation of ZnWO4-ZnO Composite Photocatalyst and Its Photocatalytic Activity [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(3): 457-462. |
[6] | WANG Rui-qi;XU Hai-yan;WU Si-wei;FU Min. Preparation and Visible Light Photocatalytic Activity of Bi3Ti4O12/α-Bi2 O3/TiO2 Composite Photocatalyst [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(12): 2386-2392. |
[7] | LIU Xin;LUO Wen-jing;LI Jia-ke;LAN Feng-sha. Hydrothermal Synthesis of ZnO/BiVO4 Composite Photocatalyst and Its Photocatalytic Activity [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(12): 2412-2416. |
[8] | LIU Hui;QI Hong-bin. Preparation and Photocatalyst Properties of TiO2/Zeolite L [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(12): 2485-2490. |
[9] | LIU Yong;LI Jiang-hua;LI Zi-li;HUANG Ming;ZHENG Xiao-gang;YOU Yao-hui;FU Xiao-jin. Synthesis of ZnS/g-C3N4 Compound Catalyst and Its Photocatalytic Properties under Visible-light Irradiation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(11): 2164-2168. |
[10] | YANG Xue-jiao;ZHANG Jin;CUI Xue-jiao;LI Dong-xia;JIA Han-yue;CHU Gang. Synthesis and Characterization of Yttrium Modifiedγ-alumina by Combustion Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(1): 143-147. |
[11] | MAN Wen-kuan;LI Yang;JU Liang-chen;ZHANG Mei;GUO Min. Effect of Hydrothermal Growth Time on the Electrochromic Property of Mo Doped WO3 Nanorod Arrays [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(2): 316-321. |
[12] | HE Wen-xiu;LI Xing-sheng;ZHANG Yong-qiang;FAN Jing-jing;YU Hui-ying;MENG Jing. Study on the Preparation and Electrochemical Performances of Nickel Hydroxide/Graphene Composites [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(12): 3681-3686. |
[13] | HE Jiao-jiao;DU Hui-ling;DU Xian;LIU Jun. Synthesis and Photocatalytic Performance of La-doped Mixed Crystal TiO2 Nanopowder [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(6): 1529-1534. |
[14] | TANG Hua-wei;LI Zhen. Hydrothermal Synthesis and Photocatalytic Properties of Zinc Sulfide Microsphere [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2012, 41(1): 125-129. |
[15] | KIMURA Hideo;ZHAO Hong-yang;YAO Qi-wen;CHENG Zhen-xiang;WANG Xiao-lin. Research Progress on Oxide Crystals and Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2011, 40(3): 789-795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||