JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (4): 716-723.
• Reviews • Previous Articles Next Articles
LI Qingyun1, ZHU Houbin1, ZHANG Honghu1, ZHANG Xiuquan2, HU Hui1
Received:
2021-03-09
Online:
2021-04-15
Published:
2021-05-21
CLC Number:
LI Qingyun, ZHU Houbin, ZHANG Honghu, ZHANG Xiuquan, HU Hui. Single-Crystal Lithium Niobate Thin Films[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 716-723.
[1] SCHMIDT R V, KAMINOW I P. Metal-diffused optical waveguides in LiNbO3[J]. Applied Physics Letters, 1974, 25(8): 458-460. [2] BORTZ M L, FEJER M M. Annealed proton-exchanged LiNbO3 waveguides[J]. Optics Letters, 1991, 16(23): 1844-1846. [3] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608. [4] CHEN F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams[J]. Journal of Applied Physics, 2009, 106(8): 081101. [5] NAKATA Y, GUNJI S, OKADA T, et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties[J]. Applied Physics A, 2004, 79(4/5/6): 1279-1282. [6] YOON J G, KIM K. Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process[J]. Applied Physics Letters, 1996, 68(18): 2523-2525. [7] LANSIAUX X, DOGHECHE E, REMIENS D, et al. LiNbO3 thick films grown on sapphire by using a multistep sputtering process[J]. Journal of Applied Physics, 2001, 90(10): 5274-5277. [8] SAKASHITA Y, SEGAWA H. Preparation and characterization of LiNbO3thin films produced by chemical-vapor deposition[J]. Journal of Applied Physics, 1995, 77(11): 5995-5999. [9] BRUEL M. Silicon on insulator material technology[J]. Electronics Letters, 1995, 31(14): 1201. [10] LEVY M, OSGOOD R M Jr, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293-2295. [11] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603-4605. [12] DJUKIC D, CERDA-PONS G, ROTH R M, et al. Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate[J]. Applied Physics Letters, 2007, 90(17): 171116. [13] WANG T J, CHU C H, LIN C Y. Electro-optically tunable microring resonators on lithium niobate[J]. Optics Letters, 2007, 32(19): 2777-2779. [14] RAMADAN T A, LEVY M, OSGOOD R M Jr. Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films[J]. Applied Physics Letters, 2000, 76(11): 1407-1409. [15] ROTH R M, DJUKIC D, LEE Y S, et al. Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation[J]. Applied Physics Letters, 2006, 89(11): 112906. [16] LI X J, TERABE K, HATANO H, et al. Domain patterning thin crystalline ferroelectric film with focused ion beam for nonlinear photonic integrated circuits[J]. Journal of Applied Physics, 2006, 100(10): 106103. [17] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503. [18] 韩黄璞.单晶铌酸锂薄膜的结构和属性研究[D].济南:山东大学,2016:34-52. HAN H P. Structure and properties of single crystal LiNbO3 thin films[D]. Jinan: Shandong University, 2016: 34-52(in Chinese). [19] SUBBARAMAN H, XU X C, HOSSEINI A, et al. Recent advances in silicon-based passive and active optical interconnects[J]. Optics Express, 2015, 23(3): 2487-2511. [20] KOMLJENOVIC T, DAVENPORT M, HULME J, et al. Heterogeneous silicon photonic integrated circuits[J]. Journal of Lightwave Technology, 2016, 34(1): 20-35. [21] TROIA B, PENADES J S, QU Z B, et al. Silicon ring resonator-coupled Mach-Zehnder interferometers for the Fano resonance in the mid-IR[J]. Applied Optics, 2017, 56(31): 8769-8776. [22] LEE Y S, KIM G D, KIM W J, et al. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J]. Optics Letters, 2011, 36(7): 1119-1121. [23] CHEN L, CHEN J H, NAGY J, et al. Highly linear ring modulator from hybrid silicon and lithium niobate[J]. Optics Express, 2015, 23(10): 13255-13264. [24] WEIGEL P O, SAVANIER M, DEROSE C T, et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics[J]. Sci Rep, 2016, 6: 22301. [25] WANG Y W, CHEN Z H, CAI L T, et al. Amorphous silicon-lithium niobate thin film strip-loaded waveguides[J]. Optical Materials Express, 2017, 7(11): 4018-4028. [26] CAI L, KONG R, WANG Y, et al. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film[J]. Optics Express, 2015, 23(22): 29211-29221. [27] CAI L T, WANG Y W, HU H. Low-loss waveguides in a single-crystal lithium niobate thin film[J]. Optics Letters, 2015, 40(13): 3013-3016. [28] LUO R, HE Y, LIANG H X, et al. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation[J]. Laser & Photonics Reviews, 2019, 13(3): 1800288. [29] LI S, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 2015, 23(19): 24212-24219. [30] 王羿文.铌酸锂单晶薄膜上加载条型波导和集成光学器件的研究[D].济南:山东大学,2019:62-67. WANG Y W. Study on loaded strip waveguides and integrated optical devices on LiNbO3 single crystal films[D]. Jinan: Shandong University, 2019: 62-67(in Chinese). [31] JIN S L, XU L T, ZHANG H H, et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides[J]. IEEE Photonics Technology Letters, 2016, 28(7): 736-739. [32] RAO A, MALINOWSKI M, HONARDOOST A, et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon[J]. Optics Express, 2016, 24(26): 29941-29947. [33] CHANG L, PFEIFFER M H P, VOLET N, et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon[J]. Optics Letters, 2017, 42(4): 803-806. [34] RABIEI P, MA J, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581. [35] RAO A, PATIL A, CHILES J, et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J]. Optics Express, 2015, 23(17): 22746-22752. [36] CHEN L, WOOD M G, REANO R M. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes[J]. Optics Express, 2013, 21(22): 27003-27010. [37] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537. [38] WANG M, WU R B, LIN J T, et al. Chemo-mechanical Polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 2019, 1(1): e9. [39] KANG S T, ZHANG R, HAO Z Z, et al. High-efficiency chirped grating couplers on lithium niobate on insulator[J]. Optics Letters, 2020, 45(24): 6651-6654. [40] HE L Y, HE L Y, ZHANG M, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 2019, 44(9): 2314-2317. [41] YONEKURA K, JIN L H, TAKIZAWA K. Measurement of dispersion of effective electro-optic Coefficients γE13 and γE33 of non-doped congruent LiNbO3Crystal[J]. Japanese Journal of Applied Physics, 2008, 47(7): 5503-5508. [42] CAI L, KANG Y, HU H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J]. Optics Express, 2016, 24(5): 4640-4647. [43] MERCANTE A J, SHI S Y, YAO P, et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth[J]. Optics Express, 2018, 26(11): 14810-14816. [44] REN T H, ZHANG M, WANG C, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. [45] MERCANTE A J, YAO P, SHI S Y, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics Express, 2016, 24(14): 15590-15595. [46] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [47] XU M, HE M, ZHANG H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 2020, 11(1): 3911. [48] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. [49] LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903. [50] YU M J, DESIATOV B, OKAWACHI Y, et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides[J]. Optics Letters, 2019, 44(5): 1222-1225. [51] ZHANG M, WANG C, HU Y W, et al. Electronically programmable photonic molecule[J]. Nature Photonics, 2019, 13(1): 36-40. [52] LIN J, XU Y, FANG Z, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining for second harmonic generation[J]. 2015: STh3M.3. [53] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 2015, 23(18): 23072-23078. [54] JIANG W C, LIN Q. Chip-scale cavity optomechanics in lithium niobate[J]. Scientific Reports, 2016, 6: 36920. [55] YE X N, LIU S J, CHEN Y P, et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching[J]. Optics Letters, 2020, 45(2): 523-526. [56] SASAGAWA K, TSUCHIYA M. Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3disk resonator[J]. Applied Physics Express, 2009, 2(12): 122401. [57] LIU S J, LIU S J, ZHENG Y L, et al. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk[J]. 2018: NpTh1C.3. [58] GAINUTDINOV R V, VOLK T R, ZHANG H H. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates[J]. Applied Physics Letters, 2015, 107(16): 162903. [59] MACKWITZ P, RÜSING M, BERTH G, et al. Periodic domain inversion in x-cut single-crystal lithium niobate thin film[J]. Applied Physics Letters, 2016, 108(15): 152902. [60] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455-1460. [61] SHAO L B, YU M J, MAITY S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498. [62] SARABALIS C J, MCKENNA T P, PATEL R N, et al. Acousto-optic modulation in lithium niobate on sapphire[J]. APL Photonics, 2020, 5(8): 086104. [63] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[EB/OL]. 2102.11956[physics.optics]. https: //arxiv.org/abs/2102.11956. |
[1] | LIU Hong, SANG Yuanhua, SUN Dehui, WANG Dongzhou, WANG Jiyang. Lithium Niobate Crystals in the Information Age: Progress and Prospect [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 708-715. |
[2] | WANG Xinwei, CHE Zhiyuan, ZHANG Xing, LI Lingwei, ZHANG Wei, SU Shi, MA Jinwen. Controllable Preparation and Photoelectrochemical Performance of TiO2 Thin Film with Different Morphology [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 516-522. |
[3] | GAO Cancan, JI Kaidi, MA Kui, YANG Fashun. Effects of Substrate Heating Temperature and Post-Annealing Temperature on the Preparation of β-Ga2O3 Thin Films by Magnetron Sputtering [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 296-301. |
[4] | ZHANG Xiaoyong, ZHANG Yanchun, ZHANG Xiaoyu, ZHANG Sen. Microstructure and Properties of Cadmium Sulfide Thin Films Prepared by Chemical Bath Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 310-317. |
[5] | KE Haipeng, OU Xuewen, KE Shaoying. Effect of He Ion Implantation on the Defect Behaviour in Ge [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2244-2251. |
[6] | SHI Boyuan, ZHANG Qinyu, JIANG Hong, WEN Feng, MA Yanping. Magnetron Sputtering Deposition and Properties of High Borosilicate Glass Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2371-2375. |
[7] | ZHANG Hao;DENG Jin-xiang;BAI Zhi-ying;PAN Zhi-wei;KONG Le. Research Progress on Doping Process and Properties of β-Ga2 O3 Thin Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1683-1690. |
[8] | WEI Li-shuai;CHEN Nuo-fu;ZHANG Hang;WANG Cong-jie;HE Kai;BAI Yi-ming;CHEN Ji-kun. Preparation of Polycrystalline Silicon Thin Film by AIC on Graphite Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1709-1713. |
[9] | LI Qi;JIANG Zhi;YANG Jian;YANG Min;LU Yi-lei;LIU Si-jia;XU Xin;WANG Shu-rong. Effect of Sulfurization Temperature-time Curves on Properties of CZTS Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1720-1727. |
[10] | ZHANG Zheng-guo;WANG Kai;WU Shan-shan;SUN Zhi-an;GONG Bo-lin. High Stoichiometric-ratio SnS2 Thin Films Rapid Prepared by Spin Coating-pyrolysis Method in Air [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1846-1850. |
[11] | FENG Jian;JIANG Hong;MA Yan-ping;NA Cong;WANG Qi. Effect of Sputtering Pressure on Transmittance and Optical Band Gap of Silicon Oxycarbide Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1470-1475. |
[12] | XUE Jian-lu;WEN Feng. Study on Composition and Structure of Carbon Doped Ti-O Thin Films Prepared by PEM Control [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1521-1526. |
[13] | ZHU Yan-xu;WANG Yue-hua;SONG Hui-hui;ZOU De-shu;LI Lai-long;SHI Dong. Study on the Crystalline Properties of the Pb(Zr0.52Ti0.48)O3 Thin Films with Different Thickness by Sputtering [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(6): 1002-1008. |
[14] | WEI Ye;ZHOU Bing;SANG Sheng-bo;DENG Xiao;CHAI Jing;CHEN Ze-hua;ZHANG Wen-dong. Mechanism Study on Size Effects of Cluster Implantation on Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(6): 1064-1071. |
[15] | FAN Zhi-qin;HE Yuan-yuan;LI Rui. Study on Opto-Electrical Properties of Cu Thin Films Deposited by Magnetron Sputtering [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(6): 1072-1077. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||