[1] JIANG J, BAI Z L, CHEN Z H, et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories[J]. Nature Materials, 2018, 17(1): 49-56. [2] GUO R, YOU L, ZHOU Y, et al. Non-volatile memory based on the ferroelectric photovoltaic effect[J]. Nat Commun, 2013, 4: 1990. [3] AFZAL A M, JAVED Y, HUSSAIN S, et al. Enhancement in photovoltaic properties of bismuth ferrite/zinc oxide heterostructure solar cell device with graphene/indium tin oxide hybrid electrodes[J]. Ceramics International, 2020, 46(7): 9161-9169. [4] CEBALLOS-SANCHEZ O, SANCHEZ-MARTINEZ A, FLORES-RUIZ F J, et al. Study of BiFeO3 thin film obtained by a simple chemical method for the heterojunction-type solar cell design[J]. Journal of Alloys and Compounds, 2020, 832: 154923. [5] FISCHER P, POLOMSKA M, SOSNOWSKA I, et al. Temperature dependence of the crystal and magnetic structures of BiFeO3[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1931-1940. [6] CHYNOWETH A G. Surface space-charge layers in barium titanate[J]. Physical Review, 1956, 102(3): 705. [7] YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 2010, 5(2): 143-147. [8] KNOCHE D S, YUN Y, RAMAKRISHNEGOWDA N, et al. Domain and switching control of the bulk photovoltaic effect in epitaxial BiFeO3 thin films[J]. Scientific Reports, 2019, 9(1): 13979. [9] YAN F, ZHU T J, LAI M O, et al. Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films[J]. Scripta Materialia, 2010, 63(7): 780-783. [10] YANG S, MA G B, XU L, et al. Improved ferroelectric properties and band-gap tuning in BiFeO3 films via substitution of Mn[J]. RSC Advances, 2019, 9(50): 29238-29245. [11] AZAM A, JAWAD A, AHMED A S, et al. Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method[J]. Journal of Alloys and Compounds, 2011, 509(6): 2909-2913. [12] IRFAN S, SHEN Y, RIZWAN S, et al. Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles[J]. Journal of the American Ceramic Society, 2017, 100(1): 31-40. [13] YANG Y G, LIU B, ZHANG Y Y, et al. Influence of Mg2+/Ga3+ doping on luminescence of Y3Al5O12∶Ce3+ phosphors[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17154-17159. [14] YANG Y G, LV X, WEI L, et al. Energy transfer from Ce3+ to Eu3+ through Tb3+ chain InYPO4∶Ce3+/Tb3+/Eu3+ phosphors[J]. Solid State Communications, 2018, 269: 35-38. [15] CULLITY B D, STOCK S R. Elements of X-ray diffraction[M]. New Jersey: Prentice Hall, 2001. [16] CAI W, FU C L, GAO R L, et al. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films[J]. Journal of Alloys and Compounds, 2014, 617: 240-246. [17] WANG C, TAKAHASHI M, FUJINO H, et al. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect[J]. Journal of Applied Physics, 2006, 99(5): 054104. [18] RAGHAVAN C M, KIM J W, SONG T K, et al. Microstructural, electrical and ferroelectric properties of BiFe0.95Mn0.05O3 thin film grown on Ge-doped ZnO electrode[J]. Materials Research Bulletin, 2016, 74: 164-168. [19] GRÄTZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. [20] QI X D, DHO J, TOMOV R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3[J]. Applied Physics Letters, 2005, 86(6): 062903. [21] WANG T T, DENG H M, CAO H Y, et al. Structural, optical and magnetic modulation in Mn and Mg co-doped BiFeO3 films grown on Si substrates[J]. Materials Letters, 2017, 199: 116-119. [22] GAUR A, SINGH P, CHOUDHARY N, et al. Structural, optical and magnetic properties of Nd-doped BiFeO3 thin films prepared by pulsed laser deposition[J]. Physica B: Condensed Matter, 2011, 406(10): 1877-1882. [23] YANG Y X, KANG L, LI H. Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping[J]. Ceramics International, 2019, 45(6): 8017-8022. [24] LIU Y Q, WANG Y J, ZHANG J, et al. Effect of Ho substitution on structure and magnetic property of BiFeO3 prepared by sol-gel method[J]. Materials Science in Semiconductor Processing, 2015, 40: 787-795. [25] HASAN M, BASITH M A, ZUBAIR M A, et al. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn[J]. Journal of Alloys and Compounds, 2016, 687: 701-706. [26] TAUC J. Amorphous and liquid semiconductors[M]. Boston, MA: Springer US, 1974. [27] PENG L, DENG H M, TIAN J J, et al. Influence of Co doping on structural, optical and magnetic properties of BiFeO3 films deposited on quartz substrates by Sol-gel method[J]. Applied Surface Science, 2013, 268: 146-150. [28] ZHANG H, LIU W F, WU P, et al. Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles[J]. Nanoscale, 2014, 6(18): 10831-10838. |