JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (5): 947-958.
• Reviews • Previous Articles Next Articles
LUO Yongzhi1, 2, YU Shengquan1, YIN Ming2, KANG Bin1
Received:
2020-11-25
Online:
2021-05-15
Published:
2021-06-15
CLC Number:
LUO Yongzhi, YU Shengquan, YIN Ming, KANG Bin. Research Progress on Transition Metal Ions Doped Ⅱ-Ⅵ Group Mid-Infrared Laser Ceramics[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 947-958.
[1] 李 江,田 丰,刘子玉.中红外激光陶瓷的研究进展与展望[J].人工晶体学报,2020,49(8):1467-1487. LI J, TIAN F, LIU Z Y. Research progress and prospect of mid-infrared laser ceramics[J]. Journal of Synthetic Crystals, 2020, 49(8): 1467-1487(in Chinese). [2] MACDONALD J R, BEECHER S J, BERRY P A, et al. Compact mid-infrared Cr∶ZnSe channel waveguide laser[J]. Applied Physics Letters, 2013, 102(16): 161110. [3] 杨俊彦,公发全,刘 锐,等.中红外激光在光电对抗领域的应用及进展[J].飞控与探测,2020,3(6):34-42. YANG J Y, GONG F Q, LIU R, et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Flight Control & Detection, 2020, 3(6): 34-42(in Chinese). [4] 张利明,周寿桓,赵 鸿,等.Fe2+掺杂中红外固体激光器技术综述[J].激光与红外,2012,42(4):360-364. ZHANG L M, ZHOU S H, ZHAO H, et al. Introduction of Fe2+ doped mid-infrared solid state laser[J]. Laser & Infrared, 2012, 42(4): 360-364(in Chinese). [5] 周 松,李茂忠,姜 杰,等.中红外固体激光技术研究进展[J].红外技术,2019,41(5):391-399. ZHOU S, LI M Z, JIANG J, et al. Solid-state mid-infrared laser technology research progress[J]. Infrared Technology, 2019, 41(5): 391-399(in Chinese). [6] 钱传鹏,余 婷,刘 晶,等.全固态中波红外激光器研究进展[J].现代应用物理,2020,11(4):17-27. QIAN C P, YU T, LIU J, et al. Research progress of all-solid-state mid-infrared laser[J]. Modern Applied Physics, 2020, 11(4): 17-27(in Chinese). [7] VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. [8] 陈媛芝,张 乐,黄存新,等.TM2+∶Ⅱ-VI族中红外激光材料[J].化学进展,2015,27(5):511-521. CHEN Y Z, ZHANG L, HUANG C X, et al. TM2+∶Ⅱ-Ⅵ mid-infrared materials[J]. Progress in Chemistry, 2015, 27(5): 511-521(in Chinese). [9] DELOACH L D, PAGE R H, WILKE G D, et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE Journal of Quantum Electronics, 1996, 32(6): 885-895. [10] ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0-4.5-μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722. [11] WAGNER G J, CARRIG T J, PAGE R H, et al. Continuous-wave broadly tunable Cr2+∶ZnSe laser[J]. Optics Letters, 1999, 24(1): 19-21. [12] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. 3 J pulsed Fe∶ZnS laser tunable from 3.44 to 4.19 μm[J]. Laser Physics Letters, 2015, 12(5): 055001. [13] SOROKINA I T, SOROKIN E, MIROV S, et al. Broadly tunable compact continuous-wave Cr2+∶ZnS laser[J]. Optics Letters, 2002, 27(12): 1040-1042. [14] MIROV S B, FEDOROV V V, MARTYSHKIN D, et al. Progress in mid-IR lasers based on Cr and Fe-doped Ⅱ-Ⅵ chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 292-310. [15] DELOACH L D, PAGE R H, WILKE G D, et al. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation[J]. 1995: LM4. [16] DOROSHENKO M E, KORANDA P, JELÍNKOVÁ H, et al. Cr∶ZnSe prism for broadly tunable mid-infrared laser radiation generation[J]. Laser Physics Letters, 2007, 4(7): 503-506. [17] AKIMOV V A, FROLOV M P, KOROSTELIN Y V, et al. Vapour growth of Ⅱ-Ⅵ single crystals doped by transition metals for mid-infrared lasers[J]. Physica Status Solidi C, 2006, 3(4): 1213-1216. [18] EGOROV A S, SAVIKIN A P, EREMEIKIN O N, et al. Study of the characteristics of a laser based on the Cr2+-ion doped ZnS polycrystal obtained by the method of chemical vapor deposition[J]. Radiophysics and Quantum Electronics, 2016, 58(8): 632-637. [19] GLADILIN A A, KALINUSKIN V P, UVAROV O V, et al. The influence of iron doping on recombination characteristics of grain boundaries in polycrystalline CVD-ZnSe[J]. Journal of Physics: Conference Series, 2019, 1199: 012001. [20] MIROV S, FEDOROV V, MOSKALEV I, et al. Progress in Cr2+ and Fe2+ doped mid-IR laser materials[J]. Laser & Photonics Reviews, 2010, 4(1): 21-41. [21] NDAP J O, CHATTOPADHYAY K, ADETUNJI O O, et al. Thermal diffusion of Cr2+ in bulk ZnSe[J]. Journal of Crystal Growth, 2002, 240(1/2): 176-184. [22] DEMIRBAS U, SENNAROGLU A, SOMER M. Synthesis and characterization of diffusion-doped Cr2+∶ZnSe and Fe2+∶ZnSe[J]. Optical Materials, 2006, 28(3): 231-240. [23] MIROV S B, MIROV S B, FEDOROV V V, et al. Progress in mid-IR Cr2+ and Fe2+ doped Ⅱ-Ⅵ materials and lasers[J]. 2011: ATuA1. [24] KERNAL J, FEDOROV V V, GALLIAN A, et al. 3.9-4.8 μm gain-switched lasing of Fe: ZnSe at room temperature[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6100, Solid State Lasers XV: Technology and Devices, San Jose, California, USA. 2006, 6100: 61000F. [25] MARTINEZ A, WILLIAMS L, FEDOROV V, et al. Gamma radiation-enhanced thermal diffusion of iron ions into Ⅱ-Ⅵ semiconductor crystals[J]. Optical Materials Express, 2015, 5(3): 558-565. [26] WANG X Y, CHEN Z, ZHANG L H, et al. Charge state and energy transfer investigation of iron-chromium co-doped ZnS polycrystalline prepared by step-temperature diffusion for mid-infrared laser applications[J]. Journal of Alloys and Compounds, 2017, 695: 3767-3771. [27] STITES R W, MCDANIEL S A, BARNES J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353. [28] GAFAROV O, MARTINEZ A, FEDOROV V, et al. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing[J]. Optical Materials Express, 2017, 7(1): 25-31. [29] EVANS J W, STITES R W, HARRIS T R. Increasing the performance of an Fe∶ZnSe laser using a hot isostatic press[J]. Optical Materials Express, 2017, 7(12): 4296-4303. [30] BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M, et al. Laser properties of Fe2+∶ZnSe fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2018, 15(4): 045806. [31] CARNALL E Jr, HATCH S E, PARSONS W F. Optical studies on hot-pressed polycrystalline CaF2 with clean grain boundaries[M]//The Role of Grain Boundaries and Surfaces in Ceramics. Boston, MA: Springer US, 1966: 165-173. [32] LU J, YAGI H, TAKAICHI K, et al. 110 W ceramic Nd3+∶Y3Al5O12 laser[J]. Applied Physics B, 2004, 79(1): 25-28. [33] 胡智向,朱 刘,狄聚青,等.ZnSe为基质材料掺杂的中红外固体激光器的技术发展[J].化工技术与开发,2020,49(9):36-42+73. HU Z X, ZHU L, DI J Q, et al. Development of mid-infrared solid laser doped with ZnSe as matrix material[J]. Technology & Development of Chemical Industry, 2020, 49(9): 36-42+73(in Chinese). [34] SOTILLO B, ESCALANTE G, RADOI C, et al. Correlative study of structural and optical properties of ZnSe under severe plastic deformation[J]. Journal of Applied Physics, 2019, 126(22): 225702. [35] GAVRUSHCHUK E M. Polycrystalline zinc selenide for IR optical applications[J]. Inorganic Materials, 2003, 39(9): 883-899. [36] BRYZGALOV A N, MUSATOV V V, BUZ'KO V V. Optical properties of polycrystalline zinc selenide[J]. Semiconductors, 2004, 38(3): 310-312. [37] HARRIS D C. Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows[C]//Defense and Security Symposium. Proc SPIE 6545, Window and Dome Technologies and Materials X, Orlando, Florida, USA. 2007, 6545: 654502. [38] LIU K G, ZHANG L, JI N J, et al. Synthesis and phases of ZnSe prepared by hydrothermal method[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2014, 8(9-10):873-875. [39] GONG H, HUANG H, DING L, et al. Characterization and optical properties of ZnSe prepared by hydrothermal method[J]. Journal of Crystal Growth, 2006, 288(1): 96-99. [40] GONG H, HUANG H, WANG M Q, et al. Characterization and growth mechanism of ZnSe microspheres prepared by hydrothermal synthesis[J]. Ceramics International, 2007, 33(7): 1381-1384. [41] LI Y D, DING Y, QIAN Y T, et al. A solvothermal elemental reaction to produce nanocrystalline ZnSe[J]. Inorganic Chemistry, 1998, 37(12): 2844-2845. [42] ZHU J J, KOLTYPIN Y, GEDANKEN A. General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles[J]. Chemistry of Materials, 2000, 12(1): 73-78. [43] ABDEL RAFEA M. Preparation and characterization of ZnSe nanoparticles by mechanochemical process[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(4): 415-420. [44] ACHIMOVIČOVÁ M, BALÁ P, OHTANI T, et al. Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill[J]. Solid State Ionics, 2011, 192(1): 632-637. [45] WEI S, ZHANG L, YANG H, et al. Preliminary study of 3D ball-milled powder processing and SPS-accelerated densification of ZnSe ceramics[J]. Optical Materials Express, 2017, 7(4): 1131. [46] GAO J L, LIU P, ZHANG J, et al. Fabrication of high dense ZnSe ceramic by spark plasma sintering: the effect of the powder process method[J]. Solid State Phenomena, 2018, 281: 661-666. [47] ZHOU G, CALVEZ L, DELAIZIR G, et al. Comparative study of ZnSe powders synthesized by two different methods and sintered by Hot-Pressing[J]. Journal of Optoelectronics and Advanced Materials, 2014, 86(5): 436-441. [48] SAFIAN S, ZAKERI M, RAHIMIPOUR M R, et al. Influence of SPS parameters on the density and hardness of zinc selenide[J]. International Journal of Materials Research, 2016, 107(10): 948-953. [49] EHSANI M, SAFIAN S, ZAKERI M, et al. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics[J]. International Journal of Materials Research, 2019, 110(5): 454-459. [50] LU H, LIU P, TAO X H, et al. Optical properties of transparent ZnSe0.9S0.1 mixed crystal ceramics prepared by hot isostatic pressing[J]. Optical Materials, 2020, 108: 110214. [51] PAGE R H, SCHAFFERS K I, DELOACH L D, et al. Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(4): 609-619. [52] MIROV S B, MOSKALEV I S, VASILYEV S, et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-29. [53] 王云鹏,王 飞,赵东旭.Cr2+∶ZnSe全固态中红外激光器[J].中国光学,2016,9(5):563-568. WANG Y P, WANG F, ZHAO D X. All solid state mid-IR laser of Cr2+∶ZnSe[J]. Chinese Optics, 2016, 9(5): 563-568(in Chinese). [54] GALLIAN A, FEDOROV V V, MIROV S B, et al. Hot-pressed ceramic Cr2+∶ZnSe gain-switched laser[J]. Optics Express, 2006, 14(24): 11694-11701. [55] CHEN M, LI W, KOU H M, et al. Hot-pressed Cr∶ZnSe ceramic as mid-infrared laser material[C]//Proc SPIE 8786, Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, 2013, 8786: 87860L. [56] WEI Y C, LIU C Y, MA E, et al. The optical spectra characterization of Cr2+∶ZnSe polycrystalline synthesized by direct reaction of Zn-Cr alloy and element Se[J]. Ceramics International, 2020, 46(13): 21136-21140. [57] FEDOROV V, MARTYSHKIN D, KARKI K, et al. Q-switched and gain-switched Fe∶ZnSe lasers tunable over 3.60-5.15 μm[J]. Optics Express, 2019, 27(10): 13934-13941. [58] YU S Q, WU Y Q. Synthesis of Fe∶ZnSe nanopowders via the co-precipitation method for processing transparent ceramics[J]. Journal of the American Ceramic Society, 2019, 102(12): 7089-7097. [59] YU S Q, CARLONI D, WU Y Q. Microstructure development and optical properties of Fe∶ZnSe transparent ceramics sintered by spark plasma sintering[J]. Journal of the American Ceramic Society, 2020, 103(8): 4159-4166. [60] KARKI K, YU S Q, FEDOROV V, et al. Hot-pressed ceramic Fe∶ZnSe gain-switched laser[J]. Optical Materials Express, 2020, 10(12): 3417. [61] YASHINA E V. Preparation and properties of polycrystalline ZnS for IR applications[J]. Inorganic Materials, 2003, 39(7): 663-668. [62] GAVRISHCHUK E M, YASHINA é V. Zinc sulfide and zinc selenide optical elements for IR engineering[J]. Journal of Optical Technology, 2004, 71(12): 822-827. [63] 白素媛,吴宝丽,丛士博,等.硫化锌材料的研究与发展[J].山东化工,2021,50(3):83-84+88. BAI S Y, WU B L, CONG S B, et al. Research and development of zinc sulfide materials[J]. Shandong Chemical Industry, 2021, 50(3): 83-84+88(in Chinese). [64] ZHU S Z, MA H L, ZHANG X H, et al. Preparation and hot pressing of ZnS nano powders for producing transparent ceramics[J]. Rare Metal Materials and Engineering, 2008, 37: 256-260. [65] AHN H Y, CHOI W J, LEE S Y, et al. Mechanochemical synthesis of ZnS for fabrication of transparent ceramics[J]. Research on Chemical Intermediates, 2018, 44(8): 4721-4731. [66] CHLIQUE C, DELAIZIR G, MERDRIGNAC-CONANEC O, et al. A comparative study of ZnS powders sintering by hot uniaxial pressing (HUP) and spark plasma sintering (SPS)[J]. Optical Materials, 2011, 33(5): 706-712. [67] CHLIQUE C, MERDRIGNAC-CONANEC O, HAKMEH N, et al. Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders[J]. Journal of the American Ceramic Society, 2013, 96(10): 3070-3074. [68] CHEN Y Z, ZHANG L, ZHANG J, et al. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process[J]. Optical Materials, 2015, 50: 36-39. [69] LI Y Y, WU Y Q. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method[J]. Journal of the American Ceramic Society, 2015, 98(10): 2972-2975. [70] YIN J, LI Y Y, WU Y Q. Near-net-shape processed ZnS ceramics by aqueous casting and pressureless sintering[J]. Ceramics International, 2016, 42(9): 11504-11508. [71] LI C Y, PAN Y B, KOU H M, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders[J]. Journal of the American Ceramic Society, 2016, 99(9): 3060-3066. [72] LI Y Y, TAN W X, WU Y Q. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials[J]. Journal of the European Ceramic Society, 2020, 40(5): 2130-2140. [73] LI C Y, XIE T F, DAI J W, et al. Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method[J]. Ceramics International, 2018, 44(1): 747-752. [74] YEO S Y, KWON T H, PARK C S, et al. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature[J]. Journal of Electroceramics, 2018, 41(1/2/3/4): 1-8. [75] LEE K T, CHOI B H, WOO J U, et al. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders[J]. Journal of the European Ceramic Society, 2018, 38(12): 4237-4244. [76] CHOI B H, KIM D S, LEE K T, et al. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders[J]. Journal of the American Ceramic Society, 2020, 103(4): 2663-2673. [77] DURAND G R, HAKMEH N, DORCET V, et al. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method[J]. Journal of the European Ceramic Society, 2019, 39(10): 3094-3102. [78] MOSKALEV I, MIROV S, MIROV M, et al. 140 W Cr∶ZnSe laser system[J]. Optics Express, 2016, 24(18): 21090-21104. [79] LI Y Y, LIU Y, FEDOROV V V, et al. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics[J]. Scripta Materialia, 2016, 125: 15-18. [80] LI C Y, CHEN H H, IVANOV M, et al. Large-scale hydrothermal synthesis and optical properties of Cr2+∶ZnS nanocrystals[J]. Ceramics International, 2018, 44(11): 13169-13175. [81] LI C Y, XIE T F, KOU H M, et al. Hot-pressing and post-HIP treatment of Fe2+∶ZnS transparent ceramics from co-precipitated powders[J]. Journal of the European Ceramic Society, 2017, 37(5): 2253-2257. |
[1] | CHEN Ya-ping;SUN Zhi-gang;ZHAO Yan;LIAO Fan;CHEN Hong-bing. Bridgman Growth and Spectral Properties of Nd3 +∶YCa4O(BO3)3 Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2019, 48(11): 2008-2013. |
[2] | YANG Ming-ming;WANG Xiao-dan;ZENG Xiong-hui;GUO Yun;ZHANG Ji-cai;XU Ke. Spectral Properties of Pr3+ , Tm3+ Co-doped AIN Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(5): 1305-1309. |
[3] | WANG Min-gang;YE Bing;WEI Ran;HU Xu-bo;DAI Shi-xun;CHEN Hong-bing. Growth and Spectral Properties of Er3+: CaMoO4 Single Crystal by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(10): 2626-2631. |
[4] | LI Bai-zhong;LI Zheng;SHI Zhen-hua;NING Kai-jie;ZHANG Pei-xiong;XU Min. Growth and Spectral Properties of Zn2+∶Yb3+∶ LiNbO3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(7): 1607-1610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||