JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (7): 1183-1199.
Special Issue: 人工光/声微结构材料
• Reviews • Next Articles
GAO Bofeng, REN Mengxin, ZHENG Dahuai, WU Wei, CAI Wei, SUN Jun, KONG Yongfa, XU Jingjun
Received:
2021-05-14
Online:
2021-07-15
Published:
2021-08-16
[1] 刘思敏,郭 儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004. LIU S M, GUO R, XU J J. Photorefractive nonlinear optics and its applications [M]. Beijing: Science Press, 2004(in Chinese). [2] 孔勇发,许京军,张光寅,等.多功能光电材料:铌酸锂晶体[M].北京:科学出版社,2005. KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005(in Chinese). [3] VOLK T, WÖHLECKE M. Lithium niobate: defects, photorefraction and ferroelectric switching[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2008 [4] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203. [5] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971. [6] 孙 军,郝永鑫,张 玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964(in Chinese). [7] LU Y, ZHANG Q, WU Q, et al. Giant enhancement of THz-frequency optical nonlinearity by phonon polariton inionic crystals[J]. Nature Communications, 2021, 12: 3183. [8] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503. [9] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): 1806452. [10] LIN J T, BO F, CHENG Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910-1936. [11] ZACHARIASEN W H. Untersuchungen über Die Kristallstrukturen von Sesquioxiden und Verbindungen ABO3[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1929, 51(1): 123. [12] SRINIVASAN N R. Studies on niobium and tantalum[J]. Proceedings of the Indian Academy of Sciences - Section A, 1950, 31(5): 300-316. [13] SÁNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed—part I[J]. Crystals, 2020, 10(11): 973. [14] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887. [15] MATTHIAS B T. Ferroelectricity[J]. Science, 1951, 113(2943): 591-596. [16] 莱因斯,格拉斯.铁电体及有关材料的原理和应用[M].钟维烈,译.北京:科学出版社,1989. LINES M E, GLASS A M. Principles and applications of Ferroelectrics and related materials. Translated: Zhong W L. Beijing: Science Press, 1989. [17] OHLWILER R W. High temperature ferroelectric materials[R]. PN, 1964. [18] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113. [19] FEDULOV S A, SHAPIRO I, LADYZHENSKI P B. Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals[J]. Kristallografiya, 1965, 10(2): 268-9. [20] WARNER J, ROBERTSON D S, HULME K F. The temperature dependence of optical birefringence in lithium niobate[J]. Physics Letters, 1966, 20(2): 163-164. [21] BOYD G D, MILLER R C, NASSAU K, et al.LiNbO3: an efficient phase matchable nonlinear optical material[J]. Applied Physics Letters, 1964, 5(11): 234-236. [22] NASSAU K, LEVINSTEIN H J, LOIACONO G M. The domain structure and etching of ferroelectric lithium niobate[J]. Applied Physics Letters, 1965, 6(11): 228-229. [23] NASSAU K, LEVINSTEIN H J. Ferroelectric behavior of lithium niobate[J]. Applied Physics Letters, 1965, 7(3): 69-70. [24] WYCKOFF R W G. Crystal structures[M]. New York: Interscience, 1951. [25] MEGAW H D. Ferroelectricity and crystal structure.Ⅱ[J]. Acta Crystallographica, 1954, 7(2): 187-194. [26] SPEAKMAN J C, ABRAHAMS S C, MEGAW H D. Crystallography[J]. Annual Reports on the Progress of Chemistry, 1956, 53: 383. [27] SHIOZAKI Y, MITSUI T. Powder neutron diffraction study of LiNbO3[J]. Journal of Physics and Chemistry of Solids, 1963, 24(8): 1057-1061. [28] ABRAHAMS S C, REDDY J M, BERNSTEIN J L. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 997-1012. [29] ABRAHAMS S C, HAMILTON W C, REDDY J M. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 1013-1018. [30] ABRAHAMS S C, LEVINSTEIN H J, REDDY J M. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1 200 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 1019-1026. [31] NYE J F. Physical properties of crystals (Clarendon Press, Oxford, 1957)[M]. Oxford: Clarendon Press, 1957 [32] 铌酸锂晶体的生长[J].压电与声光,1971(1):45-53. Growth of LiNbO3 crystal [J]. Piezoelectrics & Acoustooptics, 1971(1): 45-53(in Chinese). [33] ZHONG G G, JIN J, WU Z K. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[J]. 11th International Quantum Electronics Conference, 1980: 631. [34] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607-609. [35] HAMAGUCHI C, Quantum Structures. InBasic Semiconductor Physics[M]. Springer Berlin Heidelberg: Berlin, Heidelberg, 2001: 307-399. [36] POCKELS F C A. Lehrbuch der kristalloptik[M]. BG Teubner, 1906 [37] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64. [38] LENZO P V, SPENCER E G, NASSAU K. Electro-optic coefficients in single-domain ferroelectric lithium niobate[J].JOSA, 1966, 56(5): 633-635. [39] TURNER E H. High-frequency electro-optic coefficients of lithium niobate[J]. Applied Physics Letters, 1966, 8(11): 303-304. [40] KAMINOW I P, SHARPLESS W M. Performance of LiTaO3 and LiNbO3 light modulators at 4 GHz[J]. Applied Optics, 1967, 6(2): 351-352. [41] KAMINOW I P, TURNER E H. Electrooptic light modulators[J]. Applied Optics, 1966, 5(10): 1612-1628. [42] BERLINCOURT D A, CURRAN D R, JAFFE H. Piezoelectric and piezomagnetic materials and their function in transducers[M]//Physical Acoustics. Amsterdam: Elsevier, 1964: 169-270. [43] KAMINOW I P. Barium titanate light phase modulator[J]. Applied Physics Letters, 1965, 7(5): 123-125. [44] KAMINOW I P. Barium titanate light modulator.Ⅱ[J]. Applied Physics Letters, 1966, 8(11): 305-307. [45] HIRSCHMANN E. Electro-optic and magneto-optic modulators[R]. Washington D. C.: NASA, 1967. [46] BASS J C. A review of electro-optic beam deflection techniques[J]. Radio and Electronic Engineer,1968, 34(6): 345-352. [47] SHANG J F, SUN J, LI Q L, et al. Single-block pulse-on electro-optic Q-switch made of LiNbO3[J]. Scientific Reports, 2017, 7: 4651. [48] SHANG J F, SUN J, LI Q L, et al. High-repetition-rate LiNbO3 electro-optic Q-switched Nd∶YVO4 laser[J]. Acta Photonica Sinica, 2018, 47(5): 0514001. [49] 李清连,孙 军,吴 婧,等.系列铌酸锂晶体在电光调Q激光系统中的激光损伤性能研究[J].人工晶体学报,2019,48(9):1615-1620. LI Q L, SUN J, WU J, et al. Laser damage of a series of lithium niobate crystals under Q-switched laser system[J]. Journal of Synthetic Crystals, 2019, 48(9): 1615-1620(in Chinese). [50] Integrated optical amplitude modulator: modulate light with high frequencies [OL]. https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled/amplitude-modulator [51] MAKER P D, TERHUNE R W, NISENOFF M, et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 1962, 8(1): 21-22. [52] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939. [53] MILLER R C. Optical second harmonic generation in piezoelectric crystals[J]. Applied Physics Letters, 1964, 5(1): 17-19. [54] MILLER R C, BOYD G D, SAVAGE A. Nonlinear optical interactions in LiNbO3 without double refraction[J]. Applied Physics Letters, 1965, 6(4): 77-79. [55] GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976. [56] GIORDMAINE J A, MILLER R C. Optical parametric oscillation in the visible spectrum[J]. Applied Physics Letters, 1966, 9(8): 298-300. [57] HOBDEN M V, WARNER J. The temperature dependence of the refractive indices of pure lithium niobate[J]. Physics Letters, 1966, 22(3): 243-244. [58] MIDWINTER J E, WARNER J. Up-conversion of near infrared to visible radiation in lithium-meta-niobate[J]. Journal of Applied Physics, 1967, 38(2): 519-523. [59] MIDWINTER J E. Image conversion from 1.6 μm to the visible in lithium niobate[J]. Applied Physics Letters, 1968, 12(3): 68-70. [60] MIDWINTER J. Parametric infrared image converters[J]. IEEE Journal of Quantum Electronics, 1968, 4(11): 716-720. [61] ANDREWS R. Wide angular aperture image up-conversion[J]. IEEE Journal of Quantum Electronics, 1969, 5(11): 548-550. [62] MIDWINTER J E. Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle[J]. Applied Physics Letters, 1969, 14(1): 29-32. [63] ABBAS M M, KOSTIUK T, OGILVIE K W. Infraredupconversion for astronomical applications[J]. Applied Optics, 1976, 15(4): 961-970. [64] FARIES D W. Far-infrared generation by nonlinear optical interaction[D].Berkeley: University of California Berkeley, 1969. [65] AUSTON D H, GLASS A M, LEFUR P. Tunable far-infrared generation by difference frequency mixing of dye lasers in reduced (black) lithium niobate[J]. Applied Physics Letters, 1973, 23(1): 47-48. [66] THOMPSON D E, MCMULLEN J D, ANDERSON D B. Second-harmonic generation in GaAs“stack of plates” using high-power CO2 laser radiation[J]. Applied Physics Letters, 1976, 29(2): 113-115. [67] DEWEY C F, HOCKER L O. Enhanced nonlinear optical effects in rotationally twinned crystals[J]. Applied Physics Letters, 1975, 26(8): 442-444. [68] ZHU S N, ZHU Y Y, MING N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1997, 278(5339): 843-846. [69] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12(10): 596-600. [70] Covesion Ltd. SHG crystals[EB/OL]. (2020-10-09)[2021-04-26]https://www.covesion.com/en/products/mgoppln-crystals/shg-crystals. [71] HU X P, ZHAO G, YAN Z, et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd∶YAG laser with a cascadedLiTaO3 superlattice[J]. Optics Letters, 2008, 33(4): 408-410. [72] WARNER A. New piezoelectric materials[C]//19th Annual Symposium on Frequency Control. April 20-22, 1965, Atlantic City, NJ, USA. IEEE, 1965: 5-21. [73] JAFFE H. Piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1958, 41(11): 494-498. [74] BRIENZA M J, DEMARIA A J. Laser-induced microwave sound by surface heating[J]. Applied Physics Letters, 1967, 11(2): 44-46. [75] WEN C P, MAYO R F. Acoustic attenuation of single-domain lithium niobate[J]. IEEE Transactions on Electron Devices, 1966, ED-13(8/9): 678. [76] FRASER D B, WARNER A W. Lithium niobate: a high-temperature piezoelectric transducer material[J]. Journal of Applied Physics, 1966, 37(10): 3853-3854. [77] GRIFFIN J W, PETERS T J, POSAKONY G J, et al. Under-sodium viewing: a review of ultrasonic imaging technology for liquid metal fast reactors[R]. Office of Scientific and Technical Information (OSTI), 2009. [78] BAO X Q, SCOTT J, BOUDREAU K, et al. High temperature piezoelectric drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009. San Diego, California, USA. SPIE, 2009. [79] BAO X Q, BAR-COHEN Y, SCOTT J, et al. Ultrasonic/sonic drill for high temperature application[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010. San Diego, California, USA. SPIE, 2010. [80] BAO X Q, BAR-COHEN Y, SHERRIT S, et al. High temperature piezoelectric drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012. San Diego, California. SPIE, 2012. [81] DAMON R W. Solid-state microwave delay lines[J]. IEEE Spectrum, 1967, 4(6): 87-92. [82] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74. [83] CHEN F S, LAMACCHIA J T, FRASER D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 1968, 13(7): 223-225. [84] CHEN F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 1969, 40(8): 3389-3396. [85] HALL T J, JAURA R, CONNORS L M, et al. The photorefractive effect—a review[J]. Progress in Quantum Electronics, 1985, 10(2): 77-146. [86] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960. [87] BOYD G D, BOND W L, CARTER H L. Refractive index as a function of temperature in LiNbO3[J]. Journal of Applied Physics, 1967, 38(4): 1941-1943. [88] BYER R L, PARK Y K, FEIGELSON R S, et al. Efficient second-harmonic generation of Nd∶YAG laser radiation using warm phasematching LiNbO3[J]. Applied Physics Letters, 1981, 39(1): 17-19. [89] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998. [90] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158. [91] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction: LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281. [92] YAN W B, SHI L H, CHEN H J, et al. Investigations on the UV photorefractivity of LiNbO3∶Hf[J]. Optics Letters, 2010, 35(4): 601-603. [93] 李树奇,刘士国,孔勇发,等.四价掺杂铌酸锂晶体抗光折变性能研究[J].人工晶体学报,2006,35(3):474-477. LI S Q, LIU S G, KONG Y F, et al. Optical damage resistance in LiNbO3 crystals doped with tetravalent ions[J]. Journal of Synthetic Crystals, 2006, 35(3): 474-477(in Chinese). [94] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal:zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908. [95] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters,2009, 35(1): 10. [96] XIN F F, ZHANG G Q, GE X Y, et al. Ultraviolet band edge photorefractivity in LiNbO3∶Sn crystals[J]. Optics Letters, 2011, 36(16): 3163-3165. [97] AMODEI J J, PHILLIPS W, STAEBLER D L. Improved electrooptic materials and fixing techniques for holographic recording[J]. Applied Optics, 1972, 11(2): 390. [98] GAYLORD T K, TITTEL F K. Angular selectivity of lithium niobate volume holograms[J]. Journal of Applied Physics, 1973, 44(10): 4771-4773. [99] WHITE J O, CRONIN-GOLOMB M, FISCHER B, et al. Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3[J]. Applied Physics Letters, 1982, 40(6): 450-452. [100] CRONIN-GOLOMB M, FISCHER B, WHITE J O, et al. Passive phase conjugate mirror based on self-induced oscillation in an optical ring cavity[J]. Applied Physics Letters, 1983, 42(11): 919-921. [101] KURZ H. Wavelength dependence of the photorefractive process in doped LiNbO3[J]. Ferroelectrics, 1974, 8(1): 437-439. [102] MAGNUSSON R, GAYLORD T K. Laser scattering induced holograms in lithium niobate[J]. Applied Optics, 1974, 13(7):1545_1-1548. [103] ZHANG G Y, LI Q X, HO P P, et al. Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3∶Fe[J]. Applied Optics, 1986, 25(17): 2955-2959. [104] ZHANG G,LIU S, WU Z, et al. Degenerate stimulated parametric scattering in LiNbO3∶Fe[J]. Journal of the Optical Society of America B, 1987, 4(6): 882. [105] LIU S M, XU J J, ZHANG G Y, et al. Light-climbing effect in LiNbO3∶Fe crystal[J]. Applied Optics, 1994, 33(6): 997-999. [106] XU J J, ZHANG G Y, LI F F, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals[J]. Optics Letters, 2000, 25(2): 129-131. [107] LAMARQUE T, NICOLAUS R, LOISEAUX B, et al. Programmable 2D laser marking device based on a pulsed UV image coherent amplifier[C]//Proc SPIE 5063, Fourth International Symposium on Laser Precision Microfabrication, 2003, 5063: 386-388. [108] Microsoft Research Lab. Optics for the cloud[OL]. (2021-03-03)[2021-04-26]https://www.microsoft.com/en-us/research/group/optics-for-the-cloud. [109] TAY S,BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698. [110] TIAN T, KONG Y F, LIU S G, et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 2013, 21(9): 10460-10466. [111] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308. [112] ZHENG D H, WANG W W, WANG S L, et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate[J]. Applied Physics Letters, 2019, 114(24): 241903. [113] MILLER S E. Integrated optics: an introduction[J]. The Bell System Technical Journal, 1969, 48(7): 2059-2069. [114] KAMINOW I P, CARRUTHERS J R. Optical waveguiding layers in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1973, 22(7): 326-328. [115] OHMACHI Y, NODA J. Electro-optic light modulator with branched ridge waveguide[J]. Applied Physics Letters, 1975, 27(10): 544-546. [116] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608. [117] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293-2295. [118] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603-4605. [119] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 76040R. [120] 李青云,朱厚彬,张洪湖,等.铌酸锂单晶薄膜材料[J].人工晶体学报,2021,50(4):716-723. LI Q Y, ZHU H B, ZHANG H H, et al. Single-crystal lithium niobate thin films[J]. Journal of Synthetic Crystals, 2021, 50(4): 716-723(in Chinese). [121] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537. [122] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics usingthin-film lithium niobate[J]. Optica, 2019, 6(3): 380-384. [123] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119. [124] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. [125] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115. [126] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256. [127] HONARDOOST A, ABDELSALAM K, FATHPOUR S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 2020, 14(9): 2000088. [128] SUN D H, ZHANG Y W, WANG D Z, et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light: Science & Applications, 2020, 9: 197. [129] QI Y F, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320. [130] 程 亚.铌酸锂集成光路:孕育自主产业链的前沿基础研究[J].物理,2020,49(5):277-284. CHENG Y. Photonic integrated circuits on lithium niobate: today’s fundamental research for tomorrow’s industry[J]. Physics, 2020, 49(5): 277-284(in Chinese). [131] 李庚霖,贾曰辰,陈 峰.绝缘体上铌酸锂薄膜片上光子学器件的研究进展[J].物理学报,2020,69(15):157801. LI G L, JIA Y C, CHEN F. Research progress of photonics devices on lithium-niobate-on-insulator thin films[J]. Acta Physica Sinica, 2020, 69(15): 157801(in Chinese). [132] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 2021, 8(1): 011307. [133] ZHENG Y L, CHEN X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics: X, 2021, 6(1): 1889402. [134] 陈险峰,郑远林,刘海港,等.非线性频率转换新原理新平台与新应用研究[J].光学学报,2021,41(1):0119001. CHEN X F, ZHENG Y L, LIU H G, et al. New principle, platform, and application of nonlinear frequency conversion[J]. Acta Optica Sinica, 2021, 41(1): 0119001(in Chinese). [135] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [136] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364. [137] WU R B, LIN J T, WANG M, et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanicalpolish[J]. Optics Letters, 2019, 44(19): 4698-4701. [138] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11: 4123. [139] JIANG X F, XIAO Y F, ZOU C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities[J]. Advanced Materials, 2012, 24(35): OP260-OP264. [140] CHEN W, KAYA ÖZDEMIR S, ZHAO G, et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 2017, 548(7666): 192-196. [141] ZHANG X Y, CAO Q T, WANG Z, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 2019, 13(1): 21-24. [142] XIAO Y F, ZOU C, GONG Q, et al. Ultra-high-Q optical microcavities[M]. World Scientific, 2020. [143] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5: 8072. [144] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-opticmodulation[J]. Optics Express, 2015, 23(18): 23072-23078. [145] ZHENG Y, FANG Z, LIU S, et al. High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator[J]. Physical Review Letters, 2019, 122(25): 253902. [146] WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978. [147] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. [148] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383. [149] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262. [150] LUO Q, HAO Z Z, YANG C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy,2020, 64(3): 234263. [151] YIN D F, ZHOU Y, LIU Z X, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator[J]. Optics Letters, 2021, 46(9): 2127-2130. [152] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. [153] REN M X, CAI W, XU J J. Tailorable dynamics in nonlinear optical metasurfaces[J]. Advanced Materials, 2020, 32(3): 1806317. [154] 邓俊鸿,李贵新.非线性光学超构表面[J].物理学报,2017,66(14):147803. DENG J H, LI G X. Nonlinear photonic metasurfaces[J]. Acta Physica Sinica, 2017, 66(14): 147803(in Chinese). [155] 李 林,程 亚,祝世宁.浅谈超构表面在量子光学中的应用[J].物理, 2021, 50(5): 308-316. Li L, Cheng Y, Zhu S N. Application of super structured surface in quantum optics. Physics, 2021, 50(5): 308-316(in Chinese). [156] YANG Y M, KRAVCHENKO I I, BRIGGS D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 2014, 5: 5753. [157] LIU H Z, GUO C, VAMPA G, et al. Enhanced high-harmonic generation from an all-dielectric metasurface[J]. Nature Physics, 2018, 14(10): 1006-1010. [158] GAO Y S, FAN Y B, WANG Y J, et al. Nonlinearholographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061. [159] VABISHCHEVICH P P, LIU S, SINCLAIR M B, et al. Enhanced second-harmonic generationin broken symmetry Ⅲ-V semiconductor metasurfaces driven by fano resonance[J]. 2018: FW3G.1. [160] LIU S, VABISHCHEVICH P P, VASKIN A, et al. An all-dielectric metasurface as a broadband optical frequency mixer[J]. Nature Communications, 2018, 9: 2507. [161] SUN S, ZHOU Z, ZHANG C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452. [162] SEMMLINGER M, ZHANG M, TSENG M L, et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface[J]. Nano Letters, 2019, 19(12): 8972-8978. [163] ZHANG D, REN M X, WU W, et al. Nanoscale beam splitters based on gradient metasurfaces[J]. Optics Letters, 2018, 43(2): 267-270. [164] GAO B F, REN M X, WU W, et al. Lithium niobate metasurfaces[J]. Laser & Photonics Reviews, 2019, 13(5): 1800312. [165] MA J J, CHEN J X, REN M X, et al. Second-harmonic generation and its nonlinear depolarization from lithium niobate thin films[J]. Optics Letters, 2020, 45(1): 145-148. [166] MA J J,REN M X, WU W, et al. Resonantly tunable second harmonic generation from lithium niobate metasurfaces[EB/OL]. 2020. [167] MA J J, XIE F, CHEN W J, et al. Nonlinear lithium niobate metasurfaces for second harmonic generation[J].Laser & Photonics Reviews, 2021, 15(5): 2000521. [168] FEDOTOVA A, YOUNESI M, SAUTTER J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Letters, 2020, 20(12): 8608-8614. [169] CARLETTI L, ZILLI A, MOIA F, et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface[J]. ACS Photonics, 2021, 8(3): 731-737. [170] FANG B, LI H M, ZHU S N, et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 2020, 8(8): 1296-1300. [171] KIM K H, RIM W S. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation[J]. ACS Photonics, 2018, 5(12): 4769-4775. [172] LI Y, HUANG Z J, SUI Z, et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation[J]. Nanophotonics, 2020, 9(11): 3575-3585. [173] TIMPU F, SENDRA J, RENAUT C, et al. Lithium niobate nanocubes as linear and nonlinear ultravioletMie resonators[J]. ACS Photonics, 2019, 6(2): 545-552. [174] GAO B F, REN M X, WU W, et al. Electro-optic lithium niobate metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(4): 1-6. |
[1] | WU Rui, HU Yang, TANG Rongfen, YANG Qian, WANG Xu, WU Yiyi, NIE Dengpan, WANG Huanjiang. Study of Gas-Phase Parasitic Reaction Pathways for ZnO Thin Film Grown by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1608-1619. |
[2] | MA Cuiping, CHEN Jiaying, CHEN Huaixi, LIANG Wanguo, WU Qiulin, FENG Xinkai. Study on Fiber End-Face Coupled Periodically Poled Lithium Niobate (PPLN) Thin Film Waveguide Device [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1319-1325. |
[3] | ZHONG Qiongli, WANG Xu, MA Kui, YANG Fashun. Effect of Al Doping on the Optical Properties of β-Ga2O3 Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1352-1360. |
[4] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
[5] | ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584. |
[6] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
[7] | LIN Jintian, GAO Renhong, GUAN Jianglin, LI Chuntao, YAO Ni, CHENG Ya. Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 372-394. |
[8] | ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan. Conductive Domain Wall and Its Applications in Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 395-409. |
[9] | XIE Hanrong, YANG Tiefeng, WEI Yuming, GUAN Heyuan, LU Huihui. Recent Research Progress of Thin film Lithium Niobate Photodetector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 410-425. |
[10] | YE Zhilin, LI Shifeng, CUI Guoxin, YIN Zhijun, WANG Xuebin, ZHAO Gang, HU Xiaopeng, ZHU Shining. Fabrication and Characterization of Wafer-Scale Thin-Film Lithium Niobate Waveguides [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 426-433. |
[11] | SUN Dehui, HAN Wenbin, LI Chenzhe, PENG Liguo, LIU Hong. Growth of 8-Inch Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 434-440. |
[12] | HE Yuxuan, WU Jiangwei, CHEN Yuping, CHEN Xianfeng. Study on Fabrication of Erbium-Doped Lithium Niobate Thin Film Based on Low Temperature Ion Exchange Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 441-448. |
[13] | LIU Qilu, ZHENG Mingyang, GAO Yang, ZHANG Longxi, SONG Yukun, WANG Fulei, LIU Hong, WANG Dongzhou, SANG Yuanhua. Poling Electric Field Uniformization Design Regulates the Duty Cycle of Periodically Poled Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 449-457. |
[14] | DUAN Yumeng, JIA Yuechen, LYU Jinman. Femtosecond Laser Direct Writing of Lithium Niobate Crystal Semi-Cladding Optical Waveguide [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 458-464. |
[15] | CHEN Li, ZHOU Xudong, YUAN Mingrui, XIAO Huifu, TIAN Yonghui. Integrated Lithium Niobate Polarization Beam Splitter Based on a Subwavelength Grating-Assisted Directional Coupler [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 465-471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||