[1] CHEN J, WANG P, LIU C, et al. Ultrathin aluminum oxide films induced by rapid thermal annealing for effective silicon surface passivation[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(10): 2100267. [2] BALAJI P, DAUKSHER W J, BOWDEN S G, et al. Improving surface passivation on very thin substrates for high efficiency silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2020, 216: 110715. [3] BULLOCK J, HETTICK M, GEISSBÜHLER J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature Energy, 2016, 1: 15031. [4] OH J, YUAN H C, BRANZ H M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures[J]. Nature Nanotechnology, 2012, 7(11): 743-748. [5] ABERLE A G. Surface passivation of crystalline silicon solar cells: a review[J]. Progress in Photovoltaics: Research and Applications, 2000, 8(5): 473-487. [6] HUANG Y Y, OK Y W, MADANI K, et al. ~23% rear side poly-Si/SiO2 passivated silicon solar cell with optimized ion-implanted boron emitter and screen-printed contacts[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111183. [7] SOMAN A, ANTONY A. A critical study on different hydrogen plasma treatment methods of a-Si:H/c-Si interface for enhanced defect passivation[J]. Applied Surface Science, 2021, 553: 149551. [8] MIKE TANG SOO KIONG AH SEN, BRONSVELD P, WEEBER A. Thermally stable MoOx hole selective contact with Al2O3 interlayer for industrial size silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111139. [9] LIU H, WANG Y, DONG L M, et al. Improved Al2O3/SiNx and SiO2/SiNx stack passivation layer structure PERC sc-silicon solar cells on mass production line[J]. International Journal of Energy Research, 2021, 45(4): 5806-5814. [10] HORÁNYI T S, PAVELKA T, TÜTTÖ P. In situ bulk lifetime measurement on silicon with a chemically passivated surface[J]. Applied Surface Science, 1993, 63(1/2/3/4): 306-311. [11] BATRA N, VANDANA, KUMAR S, et al. A comparative study of silicon surface passivation using ethanolic iodine and bromine solutions[J]. Solar Energy Materials and Solar Cells, 2012, 100: 43-47. [12] CHHABRA B, BOWDEN S, OPILA R L, et al. High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation[J]. Applied Physics Letters, 2010, 96(6): 063502. [13] HAR-LAVAN R, SCHREIBER R, YAFFE O, et al. Molecular field effect passivation: quinhydrone/methanol treatment of n-Si(100)[J]. Journal of Applied Physics, 2013, 113(8): 084909. [14] GRANT N E, MURPHY J D. Temporary surface passivation for characterisation of bulk defects in silicon: a review[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2017, 11(11): 1700243. [15] CHEN J H, GE K P, CHEN B B, et al. Establishment of a novel functional group passivation system for the surface engineering of c-Si solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 195: 99-105. [16] YANG L L, CHEN J H, GE K P, et al. Polymer/Si heterojunction hybrid solar cells with rubrene: DMSO organic semiconductor film as an electron-selective contact[J]. The Journal of Physical Chemistry C, 2018, 122(41): 23371-23376. [17] BULLOCK J, KIRIYA D, GRANT N, et al. Superacid passivation of crystalline silicon surfaces[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 24205-24211. [18] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [19] CHL P E B. Projector augmented-wave method[J]. Physical Review B, 1994, 50: 17953-17979. [20] PERDEW, BURKE, ERNZERHOF. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [21] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [22] TROMP R M, HAMERS R J, DEMUTH J E. Si(001) dimer structure observed with scanning tunneling microscopy[J]. Physical Review Letters, 1985, 55(12): 1303-1306. [23] WOLKOW R A. Direct observation of an increase in buckled dimers on Si(001) at low temperature[J]. Physical Review Letters, 1992, 68(17): 2636-2639. [24] BACK S, SCHMIDT J A, JI H, et al. On the structure of Si(100) surface: importance of higher order correlations for buckled dimer[J]. The Journal of Chemical Physics, 2013, 138(20): 204709. [25] HUGHBANKS T, HOFFMANN R. Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems[J]. Journal of the American Chemical Society, 1983, 105(11): 3528-3537. [26] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. |