[1] GOETZBERGER A, KNOBLOCH J, VOß B. Crystalline silicon solar cells[M]. Chichester, UK: John Wiley & Sons, Ltd, 2014. [2] 尹建华,李志伟.半导体硅材料基础[M].北京:化学工业出版社,2009:97-107. YIN J H, LI Z W. Fundamentals of semiconductor silicon materials[M]. Beijing: Chemical Industry Press, 2009: 97-107(in Chinese). [3] BROWN R A. Theory of transport processes in single crystal growth from the melt[J]. AIChE Journal, 1988, 34(6): 881-911. [4] GEVELBER M A, STEPHANOPOULOS G, WARGO M J. Dynamics and control of the Czochralski process Ⅱ. Objectives and control structure design[J]. Journal of Crystal Growth, 1988, 91(1/2): 199-217. [5] GEVELBER M A. Dynamics and control of the Czochralski process Ⅳ. Control structure design for interface shape control and performance evaluation[J]. Journal of Crystal Growth, 1994, 139(3/4): 286-301. [6] GALAZKA Z, WILKE H. Heat transfer and fluid flow during growth of Y3Al5O12 single crystals using the czochralski method[J]. Crystal Research and Technology, 2000, 35(11/12): 1263-1278. [7] 刘 丁.单晶硅生长的建模与控制[M].北京:科学出版社, 2015: 241-252. LIU D. Modeling and control of Czochralski silicon single crystal growth[M]. Beijing: Science Press, 2015: 241-252(in Chinese). [8] 张 晶,潘亚妮,刘 丁,等.基于响应面法的直拉硅单晶生长工艺参数优化方法[J].人工晶体学报,2018,47(12):2429-2435. ZHANG J, PAN Y N, LIU D, et al. Optimization of cz silicon monocrystal growth process parameters based on response surface method[J]. Journal of Synthetic Crystals, 2018, 47(12): 2429-2435(in Chinese). [9] 刘 丁,赵小国,赵 跃.直拉硅单晶生长过程建模与控制研究综述[J].控制理论与应用,2017,34(1):1-12. LIU D, ZHAO X G, ZHAO Y. A review of growth process modeling and control of Czochralski silicon single crystal[J]. Control Theory & Applications, 2017, 34(1): 1-12(in Chinese). [10] ARMAOU A, CHRISTOFIDES P D. Crystal temperature control in the Czochralski crystal growth process[J]. AIChE Journal, 2001, 47(1): 79-106. [11] ABDOLLAHI J, IZADI M, DUBLJEVIC S. Model predictive temperature tracking in crystal growth processes[J]. Computers & Chemical Engineering, 2014, 71: 323-330. [12] ABDOLLAHI J, IZADI M, DUBLJEVIC S. Temperature distribution reconstruction in Czochralski crystal growth process[J]. AIChE Journal, 2014, 60(8): 2839-2852. [13] WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process I: motivation, modeling and feedback controller design[J]. Journal of Crystal Growth, 2010, 312(7): 1005-1018. [14] WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process Ⅱ: reconstruction of crystal radius and growth rate from the weighing signal[J]. Journal of Crystal Growth, 2010, 312(7): 1019-1028. [15] NEUBERT M, WINKLER J. Nonlinear model-based control of the Czochralski process Ⅲ: proper choice of manipulated variables and controller parameter scheduling[J]. Journal of Crystal Growth, 2012, 360: 3-11. [16] NEUBERT M, WINKLER J. Nonlinear model-based control of the Czochralski process Ⅳ: feedforward control and its interpretation from the crystal grower′s view[J]. Journal of Crystal Growth, 2014, 404: 210-222. [17] 万 银.基于有限元模型的CZ法硅单晶温度与直径跟踪控制[D].西安:西安理工大学,2019. WAN Y. Temperature and diameter tracking control of CZ method single crystal based on finete element model[D]. Xi'an: Xi'an University of Technology, 2019(in Chinese). [18] 张 俊,林勇刚,高 宇,等.300 mm单晶硅生长过程中直径的功率控制方法[J].稀有金属,2021,45(6):687-694. ZHANG J, LIN Y G, GAO Y, et al. Diameter control by heater power during 300 mm silicon crystal growth[J]. Chinese Journal of Rare Metals, 2021, 45(6): 687-694(in Chinese). [19] 段伟锋.硅单晶等径阶段直径模型辨识与控制研究[D].西安:西安理工大学,2017. DUAN W F. Model identification and control of silicon single crystal diameter for constant-diameter growth stage[D]. Xi'an: Xi'an University of Technology, 2017(in Chinese). [20] 项森伟.高温单晶硅液位和直径视觉检测关键技术及应用研究[D].杭州:浙江大学,2018. XIANG S W. Research on the key technology and application of high temperature monocrystalline silicon liquid level and diameter detection by vision[D]. Hangzhou: Zhejiang University, 2018(in Chinese). [21] 乔朝晖.无味卡尔曼滤波在直拉法单晶硅直径控制中的应用研究[D].兰州:兰州大学,2015. QIAO C H. Research of applying UKF in crystal diameter control of czochralski process[D]. Lanzhou: Lanzhou University, 2015(in Chinese). [22] 张 晶,刘 丁,杜燕军.直拉硅单晶非均匀相变温度场最优控制[J].控制理论与应用,2021,38(1):44-52. ZHANG J, LIU D, DU Y J. Optimal control for heterogeneous phase transition temperature field of Czochralski monocrystalline silicon[J]. Control Theory & Applications, 2021, 38(1): 44-52(in Chinese). [23] 姜 舰,邓树军,戴小林,等.大直径直拉硅单晶等径的PID参数优化[J].稀有金属,2010,34(6):945-949. JIANG J, DENG S J, DAI X L, et al. Optimization of PID control parameters for large diameter silicon crystal growth[J]. Chinese Journal of Rare Metals, 2010, 34(6): 945-949(in Chinese). [24] 侯忠生.基于无模型学习的非线性系统自适应控制[D].沈阳:东北大学, 1994. HOU Z S. Parameter identification, adaptive control and modelless learning adaptive control for nonlinear systems[D]. Shenyang: Northeastern University, 1994(in Chinese). [25] HOU Z S, WANG Z. From model-based control to data-driven control: survey, classification and perspective[J]. Information Sciences, 2013, 235: 3-35. [26] HOU Z S, CHI R H, GAO H J. An overview of dynamic-linearization-based data-driven control and applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4076-4090. [27] HOU Z S, JIN S T. A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1549-1558. [28] 熊双双.无模型自适应控制的稳定性分析及在多智能体系统中的应用[D].北京:北京交通大学,2020. XIONG S S. Stability analysis of model free adaptive control with applications in multi-agent systems[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese). [29] 宋 杨.船舶减摇无模型自适应控制技术研究[D].大连:大连理工大学,2013. SONG Y. Research on ship anti-rolling control techniques with model free learning adaptive control method[D]. Dalian, China: Dalian University of Technology, 2013(in Chinese). [30] 宋泽雨,李国庆,刘凌轩.一种新的无模型自适应控制模型参数整定方法[J].化工学报,2019,70(9):3430-3440. SONG Z Y, LI G Q, LIU L X. New determination method of parameters for model-free adaptive control[J]. CIESC Journal, 2019, 70(9): 3430-3440(in Chinese). [31] 杨 欢,吴 震,王 燚,等.侧信道多层感知器攻击中基于贝叶斯优化的超参数寻优[J].计算机应用与软件,2021,38(5): 323-330. YANG H, WU Z, WANG Y, et al. Hyper-parameters optimization in side-channel attack of multilayer perceptron based on byesian optimization[J]. Computer Applications and Software, 2021, 38(5): 323-330(in Chinese). [32] 吴浩楠.超参数自动调优算法研究[D].哈尔滨:哈尔滨工业大学,2020. WU H N. Research on automatic hyper-parameter tuning algorithm[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese). [33] KLEIN A, FALKNER S, BARTELS S, et al. Fast bayesian optimization of machine learning hyperparameters on large datasets[J]. Machine Learning, 2016, arXiv: 1605.07079. [34] WANG X, EISSELER R, MOEHRING H C. Prediction and optimization of machining results and parameters in drilling by using Bayesian networks[J]. Production Engineering, 2020, 14(3): 373-383. |