[1] HONG C, ELLIOTT S J. Local feedback control of light honeycomb panels[J]. The Journal of the Acoustical Society of America, 2007, 121(1): 222-233. [2] 崔 岸,刘芳芳,张 晗,等.车身泡沫填充铝合金波纹夹芯板结构性能分析与优化[J].汽车工程,2019,41(10):1221-1227. CUI A, LIU F F, ZHANG H, et al. Performance analysis and optimization of foam-filled aluminum-alloy corrugated sandwich panel structure for vehicle body[J]. Automotive Engineering, 2019, 41(10): 1221-1227(in Chinese). [3] 刘建良,梅志远,唐宇航,等.几种典型复合材料板振动特性综合对比分析及设计规律研究[J].振动与冲击,2019,38(15):65-72. LIU J L, MEI Z Y, TANG Y H, et al. Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law[J]. Journal of Vibration and Shock, 2019, 38(15): 65-72(in Chinese). [4] 张 昭,韩星凯.基于带隙特性含周期孔的声子晶体板设计[J].人工晶体学报,2016,45(9):2185-2192. ZHANG Z, HAN X K. Design of the phononic crystal slab consists of periodic holes based on band gap features[J]. Journal of Synthetic Crystals, 2016, 45(9): 2185-2192(in Chinese). [5] 张佳龙,姚 宏,杜 军,等.基于局域共振型声子晶体在机舱内低频隔声特性[J].硅酸盐学报,2016,44(10):1440-1445. ZHANG J L, YAO H, DU J, et al. Low frequency sound insulation characteristics of the locally resonant phononic crystals in the large aircraft cabin[J]. Journal of the Chinese Ceramic Society, 2016, 44(10): 1440-1445(in Chinese). [6] 张 杰,邓 羽,彭中波,等.基于声子晶体的船机减振特性研究[J].重庆交通大学学报(自然科学版),2020,39(9):140-145+152. ZHANG J, DENG Y, PENG Z B, et al. Vibration reduction characteristics of ship engine based on phononic crystal[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(9): 140-145+152(in Chinese). [7] HUANG H H, SUN C T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density[J]. New Journal of Physics, 2009, 11(1): 013003. [8] MA G, SHENG P. Acoustic metamaterials: from local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595. [9] 黄洪赛,冉冀林,陈凯伦,等.局域共振型圆柱壳类声子晶体带隙特性研究[J].人工晶体学报,2020,49(6):1078-1082+1106. HUANG H S, RAN J L, CHEN K L, et al. Study on band gap of locally resonant cylindrical shell phononic crystals[J]. Journal of Synthetic Crystals, 2020, 49(6): 1078-1082+1106(in Chinese). [10] SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration, 1992, 158(2): 377-382. [11] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [12] SCARPA F L, RUZZENE M, MAZZARELLA L, et al. Control of vibration and wave propagation in sandwich plates with periodic auxetic core[C]//SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4697, Smart Structures and Materials 2002: Damping and Isolation, San Diego, California, USA. 2002, 4697: 176-192. [13] RUZZENE M, MAZZARELLA L, TSOPELAS P, et al. Wave propagation in sandwich plates with periodic auxetic core[J]. Journal of Intelligent Material Systems and Structures, 2002, 13(9): 587-597. [14] RUZZENE M, SCARPA F L. Control of wave propagation in sandwich beams with auxetic core[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4331, Smart Structures and Materials 2001: Damping and Isolation, Newport Beach, CA, USA. 2001, 4331: 443-454. [15] LI C, JIANG T X, HE Q B, et al. Stiffness-mass-coding metamaterial with broadband tunability for low-frequency vibration isolation[J]. Journal of Sound and Vibration, 2020, 489: 115685. [16] BARAVELLI E, RUZZENE M. Internally resonating lattices for bandgap generation and low-frequency vibration control[J]. Journal of Sound and Vibration, 2013, 332(25): 6562-6579. [17] YU G L, MIAO H W. On vibration isolation of sandwich plate with periodic hollow tube core[J]. Journal of Sandwich Structures & Materials, 2019, 21(3): 1119-1132. [18] 徐俭乐,崔洪宇,洪 明.声子晶体夹层板结构的隔声性能研究[J].振动与冲击,2021,40(9):285-291. XU J L, CUI H Y, HONG M. Sound insulation performance of phononic crystal sandwich plate structure[J]. Journal of Vibration and Shock, 2021, 40(9): 285-291(in Chinese). [19] CHENG Q, GUO H, YUAN T, et al. Topological design of square lattice structure for broad and multiple band gaps in low-frequency range[J]. Extreme Mechanics Letters, 2020, 35: 100632. |