[1] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-a review[J]. Progress in Materials Science, 2015, 68: 1-66. [2] SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 2014, 65: 124-210. [3] LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354. [4] 戴振国,董胜明,尹振华,等.PMN-PT晶体的生长、性质和应用进展[J].人工晶体学报,2005,34(6):1018-1023+1055. DAI Z G, DONG S M, YIN Z H, et al. Progress in the growth, properties and application of PMN-PT crystal[J]. Journal of Synthetic Crystals, 2005, 34(6): 1018-1023+1055(in Chinese). [5] GUO Y P, LUO H S, HE T H, et al. Peculiar properties of a high Curie temperature Pb(In1/2Nb1/2)O3-PbTiO3 single crystal grown by the modified Bridgman technique[J]. Solid State Communications, 2002, 123(9): 417-420. [6] YASUDA N, UEMURA N, OHWA H, et al. Domain observation in PIN-PT mixed crystal near a morphotropic phase boundary[J]. Journal- Korean Physical Society, 2003, 42: S1261-S1265. [7] HE C, LI X Z, WANG Z J, et al. Characterization of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric crystals grown by top-seeded solution growth method[J]. Journal of Alloys and Compounds, 2012, 539: 17-20. [8] QIAO H M, HE C, WANG Z J, et al. Improved thermal stability of ferro/piezo-electric properties of Mn-doped Pb(In1/2Nb1/2)O3-PbTiO3 ceramics[J]. Journal of the European Ceramic Society, 2018, 38(9): 3162-3169. [9] XIONG J J, WANG Z J, YANG X M, et al. Optimizing the piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric crystals via alternating current poling waveform[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(8): 2775-2780. [10] MA M, XIA S, SONG K X, et al. Temperature dependence of the transverse piezoelectric properties in the[001]-poled 0.25Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal with alternating current treatment[J]. Journal of Applied Physics, 2021, 129(11): 114102. [11] QIAO L, LI Q, QIU C R, et al. Temperature dependence of elastic, piezoelectric, and dielectric matrixes of [001]-poled rhombohedral PIN-PMN-PT single crystals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66(11): 1786-1792. [12] WAN H T, LUO C T, CHANG W Y, et al. Effect of poling temperature on piezoelectric and dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals under alternating current poling[J]. Applied Physics Letters, 2019, 114(17): 172901. [13] 张沛霖,张仲渊.压电测量[M].北京:国防工业出版社,1983. ZHANG P L, ZHANG Z Y. Piezoelectric measurement[M].Beijing: National Defense Industry Press, 1983(in Chinese). [14] HE C, WANG Z J, YANG X M, et al. Relaxor-based ferroelectric single crystals grown by top-seeded solution growth method[J]. Scientia Sinica Technologica, 2017, 47(11): 1126-1138. [15] AUGIER C, PHAMTHI M, DAMMAK H, et al. Phase diagram of high Tc Pb(In1/2Nb1/2)O3-PbTiO3 ceramics[J]. Journal of the European Ceramic Society, 2005, 25(12): 2429-2432. [16] LIU M M, TANG H Y, ZHANG W J, et al. Complete set of material constants of 001-poled 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystals using alternating current poling[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022. DOI: 10.1109/TUFFC.2022.3141461. [17] IEEE standard for relaxor-based single crystals for transducer and actuator applications[J]. IEEE Std 1859-2017, 2017: 1-25. |