[1] LIU J, KACZMAREK A M, VAN DEUN R. Advances in tailoring luminescent rare-earth mixed inorganic materials[J]. Chemical Society Reviews, 2018, 47(19): 7225-7238. [2] JIA Z, YUAN C, LIU Y, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources[J]. Light: Science & Applications, 2020, 9: 86. [3] YAO Q, HU P, SUN P, et al. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J]. Advanced Materials, 2020, 32(19): 1907888. [4] HAO J R, QU X Y, LI G G, et al. Solid-solution transformation and photoluminescence control in Ce3+-doped Ln4Si2-xMxO7+xN2-x (Ln=Y, Lu; M=B, Al, P) oxonitridosilicate phosphors[J]. Journal of Alloys and Compounds, 2019, 776: 224-235. [5] WU Y J, ZHAO X Q, ZHANG Z Y, et al. Dual-mode dichromatic SrBi4Ti4O15:Er3+ emitting phosphor for anti-counterfeiting application[J]. Ceramics International, 2021, 47(11): 15067-15072. [6] ZHENG Y L, ZHUANG W D, XU H B, et al. Polyhedral distortion control of unusual photoluminescence color tuning in garnet phosphors via cation substitution[J]. Journal of the American Ceramic Society, 2019, 102(5): 2593-2603. [7] SI J Y, LIU L H, LIANG Q F, et al. Enhanced quantum efficiency and thermal stability in tunable yellow-emitting SrxCa1-xAlSiN3:Ce3+ phosphor[J]. Journal of Alloys and Compounds, 2020, 831: 154791. [8] FANG M H, MAHLIK S, LAZAROWSKA A, et al. Structural evolution and effect of the neighboring cation on the photoluminescence of Sr(LiAl3)1-x(SiMg3)xN4:Eu2+ phosphors[J]. Angewandte Chemie International Edition, 2019, 58(23): 7767-7772. [9] REN Q, ZHAO Y J, WU X L, et al. Luminescence characteristics of a novel Tm/Eu co-doped polychromatic tunable phosphor[J]. Journal of Solid State Chemistry, 2021, 294: 121869. [10] LAI S Q, HU T, MOLOKEEV M S, et al. Photoluminescence tuning in Ba3ScB3O9:Eu2+ phosphor by crystal-site engineering[J]. Physics Open, 2021, 8: 100077. [11] LI H R, LIANG Y J, ZHU Y L, et al. Control of the photoluminescence in Ba0.97Y2Si3O10:Eu2+ phosphors via the intensification effect of the second luminescence centre[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2111-2122. [12] ZHAO M, ZHANG Q Y, XIA Z G. Structural engineering of Eu2+-doped silicates phosphors for LED applications[J]. Accounts of Materials Research, 2020, 1(2): 137-145. [13] 乔建伟.基于稀土掺杂离子格位工程调控荧光粉发光性能研究[D].北京:北京科技大学,2020. QIAO J W. Crystallographic site engineering of doped rare earth ions toward the modification of luminescent properties of phosphors[D]. Beijing: University of Science and Technology Beijing, 2020(in Chinese). [14] POORT S H M, MEYERINK A, BLASSE G. Lifetime measurements in Eu2+-doped host lattices[J]. Journal of Physics and Chemistry of Solids, 1997, 58(9): 1451-1456. [15] QIAO J, ZHOU G, ZHOU Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nature Communications, 2019, 10: 5267. [16] FANG M H, MENG S Y, MAJEWSKA N, et al. Chemical control of SrLi(Al1-xGax)3N4:Eu2+ red phosphors at extreme conditions for application in light-emitting diodes[J]. Chemistry of Materials, 2019, 31(12): 4614-4618. [17] XIANG J M, ZHENG J M, ZHOU Z W, et al. Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs[J]. Chemical Engineering Journal, 2019, 356: 236-244. [18] YANG X, ZHANG Y, ZHANG X J, et al. Facile synthesis of the desired red phosphor Li2Ca2Mg2Si2N6:Eu2+ for high CRI white LEDs and plant growth LED device[J]. Journal of the American Ceramic Society, 2020, 103(3): 1773-1781. [19] REBROVA N V, GRIPPA A Y, CALÀ R, et al. Growth and luminescent properties of new Eu2+ doped RbBa2I5 scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978: 164463. [20] LAN Y G, MEI B C, LI W W, et al. Preparation and scintillation properties of Eu2+:CaF2 scintillation ceramics[J]. Journal of Luminescence, 2019, 208: 183-187. [21] LIU C M, ZHANG S, LIU Z Y, et al. A potential cyan-emitting phosphor Sr8(Si4O12)Cl8:Eu2+ for wide color gamut 3D-PDP and 3D-FED[J]. Journal of Materials Chemistry C, 2013, 1(7): 1305. [22] WANG C, LV Q Y, MA J M, et al. A novel single-phased white light emitting phosphor with single Eu2+ doped whitlockite structure[J]. Advanced Powder Technology, 2022, 33(2): 103394. [23] LIU S H, DENG B, YANG J H, et al. Multi-site occupancies and luminescence properties of cyan-emitting Ca9-xNaGd2/3(PO4)7:Eu2+ phosphors for white light-emitting diodes[J]. Journal of Rare Earths, 2022, 40(2): 243-252. [24] ZHANG D, ZHENG B F, ZHENG Z B, et al. Multifunctional Ca9NaZn1-yMgy(PO4)7:Eu2+ phosphor for full-spectrum lighting, optical thermometry and pressure sensor applications[J]. Chemical Engineering Journal, 2022, 431: 133805. [25] DURAGKAR A, DHOBLE N S, KADAM A R, et al. Enhanced photoluminescence in RE (Eu3+, Ce3+ and Sm3+)-activated Ca10(PO4)F2 phosphors by double or triple ionized mineral doping: a comparative study[J]. Luminescence, 2021, 36(3): 606-620. [26] ZHOU X F, GENG W Y, DING J Y, et al. Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x=4, 6, 8)[J]. Dyes and Pigments, 2018, 152: 75-84. [27] FENG Y M, HUANG J P, LIU L L, et al. Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu2+, Mn2+ phosphors for near-UV white LEDs[J]. Dalton Transactions, 2015, 44(33): 15006-15013. [28] JIAO M M, JIA Y C, LÜ W, et al. Sr3GdNa(PO4)3F:Eu2+, Mn2+: a potential color tunable phosphor for white LEDs[J]. J Mater Chem C, 2014, 2(1): 90-97. [29] MI R Y, ZHAO C L, XIA Z G. Synthesis, structure, and tunable luminescence properties of novel Ba3NaLa(PO4)3F:Eu2+, Mn2+ phosphors[J]. Journal of the American Ceramic Society, 2014, 97(6): 1802-1808. [30] FU X P, LÜ W, JIAO M M, et al. Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability[J]. Inorganic Chemistry, 2016, 55(12): 6107-6113. [31] LI Y, QIU Z X, ZHANG J L, et al. Highly efficient and thermally stable single-activator white-emitting phosphor K2Ca(PO4)F:Eu2+ for white light-emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7(29): 8982-8991. [32] 唐万军,胡珊珊.KSrGd(PO4)2:Eu2+,Mn2+红色荧光粉的合成和发光性能[J].中南民族大学学报(自然科学版),2014,33(3):17-20. TANG W J, HU S S. Synthesis and luminescence properties of red-emitting phosphors KSrGd(PO4)2:Eu2+, Mn2+[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2014, 33(3): 17-20(in Chinese). [33] JIAO M M, YANG C L, LI Y L, et al. Potential color tunable Sr3LaNa(PO4)3F:Eu2+/Tb3+/Mn2+ phosphor induced by Eu2+→Tb3+ and Tb3+→Mn2+ energy transfer for WLEDs[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(36): 24566-24573. [34] DORENBOS P. Crystal field splitting of lanthanide 4fn-15d-levels in inorganic compounds[J]. Journal of Alloys and Compounds, 2002, 341(1/2): 156-159. [35] DORENBOS P. The 5d level positions of the trivalent lanthanides in inorganic compounds[J]. Journal of Luminescence, 2000, 91(3/4): 155-176. [36] DORENBOS P. Absolute location of lanthanide energy levels and the performance of phosphors[J]. Journal of Luminescence, 2007, 122/123: 315-317. [37] DORENBOS P. Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds[J]. Journal of Luminescence, 2003, 104(4): 239-260. |