JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (4): 730-749.
• Reviews • Previous Articles Next Articles
FENG Jiaju1,2, FAN Yaming2,3, FANG Dan1, DENG Xuguang2, YU Guohao2, WEI Zhipeng1, ZHANG Baoshun2
Received:
2021-12-16
Online:
2022-04-15
Published:
2022-05-16
CLC Number:
FENG Jiaju, FAN Yaming, FANG Dan, DENG Xuguang, YU Guohao, WEI Zhipeng, ZHANG Baoshun. Research Progress of Gallium Nitride Power Electronic Device Packaging Technology[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 730-749.
[1] CHEN J, DU X, LUO Q M, et al. A review of switching oscillations of wide bandgap semiconductor devices[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13182-13199. [2] BROTHERS J A, BEECHNER T. GaN module design recommendations based on the analysis of a commercial 3-phase GaN module[C]//2019 IEEE Energy Conversion Congress and Exposition. September 29 - October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 4109-4116. [3] YU Z C, ZELTNER S, BOETTCHER N, et al. Heterogeneous integration of vertical GaN power transistor on Si capacitor for DC-DC converters[C]//2018 7th Electronic System-Integration Technology Conference (ESTC). September 18-21, 2018, Dresden, Germany. IEEE, 2018: 1-5. [4] LEE F C, ZHANG W L, HUANG X C, et al. A new package of high-voltage cascode gallium nitride device for high-frequency applications[C]//2015 IEEE International Workshop on Integrated Power Packaging. May 3-6, 2015, Chicago, IL, USA. IEEE, 2015: 9-15. [5] CHEN J, XIE Y, TROMBLEY D, et al. System co-design of a 600V GaN FET power stage with integrated driver in a QFN system-in-package (QFN-SiP)[C]//2019 IEEE 69th Electronic Components and Technology Conference. May 28-31, 2019, Las Vegas, NV, USA. IEEE, 2019: 1221-1226. [6] 郝 跃,张金风,张进成.氮化物宽禁带半导体材料与电子器件[M].北京:科学出版社,2013:225-227. HAO Y, ZHANG J F, ZHANG J C. Nitride wide band gap semiconductor materials and electronic devices[M]. Beijing: Science Press, 2013:225-227(in Chinese). [7] EGAWA T, ZHAO G Y, ISHIKAWA H, et al. Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire[J]. IEEE Transactions on Electron Devices, 2001, 48(3): 603-608. [8] 陈堂胜,孔月婵,吴立枢.金刚石衬底GaN HEMT研究进展[J].固体电子学研究与进展,2016,36(5):360-364. CHEN T S, KONG Y C, WU L S. The research progress of GaN-on-diamond HEMTs[J]. Research & Progress of SSE, 2016, 36(5): 360-364(in Chinese). [9] LETELLIER A, DUBOIS M R, TROVO J P F, et al. Calculation of printed circuit board power-loop stray inductance in GaN or high di/dt applications[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 612-623. [10] MATSUURA K, YANAGI H, TOMIOKA S, et al. Power-density development of a 5MHz-switching DC-DC converter[C]//2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition. February 5-9, 2012, Orlando, FL, USA. IEEE, 2012: 2326-2332. [11] JI S, REUSCH D, LEE F C. High-frequency high power density 3-D integrated gallium-nitride-based point of load module design[J]. IEEE Transactions on Power Electronics, 2012, 28(9): 4216-4226. [12] WANG K P, YANG X, WANG L L, et al. Instability analysis and oscillation suppression of enhancement-mode GaN devices in half-bridge circuits[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1585-1596. [13] LIU Z Y, HUANG X C, ZHANG W L, et al. Evaluation of high-voltage cascode GaN HEMT in different packages[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. March 16-20, 2014, Fort Worth, TX, USA. IEEE, 2014: 168-173. [14] WANG Z, HONEA J, SHI Y X, et al. Investigation of driver circuits for GaN HEMTs in leaded packages[C]//2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. October 13-15, 2014, Knoxville, TN, USA. IEEE, 2014: 81-87. [15] REUSCH D, STRYDOM J. Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015. [16] WANG K P, WANG L L, YANG X, et al. A multiloop method for minimization of parasitic inductance in GaN-based high-frequency DC-DC converter[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4728-4740. [17] SUN B N, ZHANG Z, ANDERSEN M A E. Research of low inductance loop design in GaN HEMT application[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. October 21-23, 2018, Washington, DC, USA. IEEE, 2018: 1466-1470. [18] SUN B N, JØRGENSEN K L, ZHANG Z, et al. Multi-physic analysis for GaN transistor PCB layout[C]//2019 IEEE Applied Power Electronics Conference and Exposition. March 17-21, 2019, Anaheim, CA, USA. IEEE, 2019: 3407-3413. [19] ABDULLAH Y, LI H, WANG J. Evaluation of 600 V direct-drive GaN HEMT and a comparison to GaN GIT[C]//2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). October 30-November 1, 2017, Albuquerque, NM, USA. IEEE, 2017: 273-276. [20] NEXPERIA. Circuit design and PCB layout recommendations for GaN FET half bridges[EB/OL]. (2019-02-13)[2022-02-25]. https://assets.nexperia.com/documents/application-note/AN90006.pdf [21] GaN Systems. PCB Layout Considerations with GaN E-HEMTs[EB/OL]. (2021-07-20)[2022-02-25]. https://gansystems.com/wp-content/uploads/2021/07/GN009-PCB-Layout-Considerations-with-GaN-E-HEMTs_20210720.pdf [22] YANG S S, SOH J H, KIM R Y. Parasitic inductance reduction design method of vertical lattice loop structure for stable driving of GaN HEMT[C]//2019 IEEE 4th International Future Energy Electronics Conference. November 25-28, 2019, Singapore. IEEE, 2019: 1-8. [23] CHANDER S, SINGH P, GUPTA S, et al. Self heating effects in GaN high electron mobility transistor for different passivation material[J]. Defence Science Journal, 2020, 70(5): 511-514. [24] HARRIS T R, DAVIS W R, LIPA S, et al. Vertical stack thermal characterization of heterogeneous integration and packages[C]//2019 International 3D Systems Integration Conference (3DIC). October 8-10, 2019, Sendai, Japan. IEEE, 2019: 1-3. [25] FRANCIS D, WASSERBAUER J, FAILI F. GaN-HEMT epilayers on diamond substrates: recent progress[J]. In Proc: CS MANTECH, Austin, TX 133, 2007: 133-136. [26] CHU K K, YUROVCHAK T, CHAO P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process[C]//2013 IEEE Compound Semiconductor Integrated Circuit Symposium. October 13-16, 2013, Monterey, CA, USA. IEEE, 2013: 1-4. [27] 杨士奇,任泽阳,张金风,等.硅基氮化镓异质结材料与多晶金刚石集成生长研究[J].固体电子学研究与进展,2021,41(1):18-23. YANG S Q, REN Z Y, ZHANG J F, et al. Research on growth of poly-crystalline diamond on Si-based GaN heterojunction material[J]. Research & Progress of SSE, 2021, 41(1): 18-23(in Chinese). [28] CHU K K, CHAO P C, DIAZ J A, et al. S2-T4: low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]//2014 Lester Eastman Conference on High Performance Devices (LEC). August 5-7, 2014, Ithaca, NY, USA. IEEE, 2014: 1-4. [29] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664. [30] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420. [31] GERRER T, CIMALLA V, WALTEREIT P, et al. Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding[J]. 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017: 25-28. [32] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151. [33] MOTALA M J, BLANTON E W, HILTON A, et al. Transferrable AlGaN/GaN high-electron mobility transistors to arbitrary substrates via a two-dimensional boron nitride release layer[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21837-21844. [34] ZHANG Y, XING Y H, HAN J, et al. Improving AlN crystalline quality by high-temperature ammonia-free microwave plasma chemical vapor deposition[J]. Applied Physics Express, 2021, 14(5): 055503. [35] 田寒梅,刘金龙,陈良贤,等.微波等离子体下GaN的分解与纳米金刚石膜的沉积[J].人工晶体学报,2015,44(1):7-12. TIAN H M, LIU J L, CHEN L X, et al. Decomposition of GaN and direct deposition of nano-diamond film in microwave plasma[J]. Journal of Synthetic Crystals, 2015, 44(1): 7-12(in Chinese). [36] TIWARI R N, CHANG L. Etching of GaN by microwave plasma of hydrogen[J]. Semiconductor Science and Technology, 2010, 25(3): 035010. [37] MCCAULEY T G, GRUEN D M, KRAUSS A R. Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma[J]. Applied Physics Letters, 1998, 73(12): 1646-1648. [38] PETHERBRIDGE J R, MAY P W, PEARCE S R J, et al. Low temperature diamond growth using CO2/CH4 plasmas: molecular beam mass spectrometry and computer simulation investigations[J]. Journal of Applied Physics, 2000, 89(2): 1484-1492. [39] MAY P W, TSAI H Y, WANG W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 526-530. [40] YAMADA H, CHAYAHARA A, MOKUNO Y. Effects of intentionally introduced nitrogen and substrate temperature on growth of diamond bulk single crystals[J]. Japanese Journal of Applied Physics, 2016, 55(1S): 01AC07. [41] 付方彬,金 鹏,刘雅丽,等.MPCVD生长半导体金刚石材料的研究现状[J].微纳电子技术,2016,53(9):571-581+587. FU F B, JIN P, LIU Y L, et al. Research status of the semiconductor diamond materials grown by the MPCVD[J]. Micronanoelectronic Technology, 2016, 53(9): 571-581+587(in Chinese). [42] 林 晨,李义锋,张锦文.微波等离子体化学气相沉积方法制备纳米金刚石薄膜[J].功能材料,2021,52(7):7001-7005+7011. LIN C, LI Y F, ZHANG J W. Nanocrystalline diamond film growth by microwave plasma enhanced chemical vapor deposition (MPCVD)[J]. Journal of Functional Materials, 2021, 52(7): 7001-7005+7011(in Chinese). [43] YATES L, ANDERSON J, GU X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24302-24309. [44] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906. [45] POMEROY J W, BERNARDONI M, DUMKA D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping[J]. Applied Physics Letters, 2014, 104(8): 083513. [46] CHO J, WON Y, FRANCIS D, et al. Thermal interface resistance measurements for GaN-on-diamond composite substrates[C]//2014 IEEE Compound Semiconductor Integrated Circuit Symposium. October 19-22, 2014, La Jolla, CA, USA. IEEE, 2014: 1-4. [47] ZHENG X F, WANG A C, HOU X H, et al. Influence of the diamond layer on the electrical characteristics of AlGaN/GaN high-electron-mobility transistors[J]. Chinese Physics Letters, 2017, 34(2): 027301. [48] ANDERSON T J, HOBART K D, TADJER M J, et al. Nanocrystalline diamond for near junction heat spreading in GaN power HEMTs[J]. 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013: 1-4. [49] ZHANG H, GUO Z X, LU Y F. Enhancement of hot spot cooling by capped diamond layer deposition for multifinger AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 47-52. [50] ZHU T, ZHENG X F, CAO Y R, et al. Study on the effect of diamond layer on the performance of double-channel AlGaN/GaN HEMTs[J]. Semiconductor Science and Technology, 2020, 35(5): 055006. [51] Fujitsu Limited, Fujitsu Laboratories Limited. Fujitsu successfully grows diamond film to boost heat dissipation efficiency of GaN HEMT[DB/OL]. (2019-12-05) [2021-11-14]. https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1205-01.html [52] 鲍 婕,周德金,陈珍海,等.GaN HEMT器件封装技术研究进展[J].电子与封装,2021,21(2):7-18+5. BAO J, ZHOU D J, CHEN Z H, et al. Research progress of GaN HEMT package technology[J]. Electronics & Packaging, 2021, 21(2): 7-18+5(in Chinese). [53] FÄRCAŞ C, CIOCAN I, PETREUŞ D, et al. Thermal modeling and analysis of a power device heat sinks[C]//2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging. October 25-28, 2012, Alba Iulia, Romania. IEEE, 2012: 217-222. [54] HSU L H, LAI Y Y, TU P T, et al. Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration[J]. Micromachines, 2021, 12(10): 1159. [55] 氮化镓科技汇:QST衬底为实现非常厚的GaN缓冲层提供路径[EB/OL].(2018-05-03)[2022-02-06]. http://www.ganhemt.com/jish/78.html. Gallium nitride Technology Convergence: QST substrates provide a path to achieve very thick GaN buffers[EB/OL].(2018-05-03)[2022-02-06]. http://www.ganhemt.com/jish/78.html. [56] Semiconductor TODAY: Imec and Qromis present p-GaN HEMTs on 200 mm CTE-matched substrates. [EB/OL](2018-04-06)[2022-02-06]. http://www.semiconductor-today.com/news_items/2018/apr/imec-qromis_060418.shtml [57] GEENS K, LI X D, ZHAO M, et al. 650 V p-GaN gate power HEMTs on 200 mm engineered substrates[C]//2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). October 29-31, 2019, Raleigh, NC, USA. IEEE, 2019: 292-296. [58] YAN Z, LIU G, KHAN J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications, 2012, 3: 827. [59] LI L, FUKUI A, WAKEJIMA A. Bonding GaN on high thermal conductivity graphite composite with adequate interfacial thermal conductance for high power electronics applications[J]. Applied Physics Letters, 2020, 116(14): 142105. [60] MOHANTY S K, CHEN Y Y, YEH P H, et al. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure[J]. Scientific Report, 2019, 9: 19691. [61] ZHAO M L, TANG X S, HUO W X, et al. Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate[J]. Chinese Physics B, 2020, 29(4): 584-587. [62] WANG W J, CHEN J, LUNDH J S, et al. Modulation of the two-dimensional electron gas channel in flexible AlGaN/GaN high-electron-mobility transistors by mechanical bending[J]. Applied Physics Letters, 2020, 116(12): 123501. [63] ZHANG W L, YANG F, et al. Thermal design and performance of top-side cooled QFN 12×12 package for automotive 650-V GaN power stage[EB/OL]. (2021-03-10)[2022-02-25]. https://www.ti.com/lit/an/snoaa70/snoaa70.pdf?ts=1645757400545&ref_url=https%253A%252F%252Fcn.bing.com%252F. [64] CHENG S, CHOU P C. Novel packaging design for high-power GaN-on-Si high electron mobility transistors (HEMTs)[J]. International Journal of Thermal Sciences, 2013, 66: 63-70. [65] LU S C, ZHAO T Y, BURGOS R, et al. Packaging of (650 V, 150 A) GaN HEMT with low parasitics and high thermal performance[C]//2021 International Conference on Electronics Packaging (ICEP). May 12-14, 2021. Tokyo, Japan. IEEE, 2021. [66] LI B Y, YANG X, WANG K P, et al. A compact double-sided cooling 650V/30A GaN power module with low parasitic parameters[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 426-439. [67] LI X, CHEN G, CHEN X, et al. High temperature ratcheting behavior of nano-silver paste sintered lap shear joint under cyclic shear force[J]. Microelectronics Reliability, 2013, 53(1): 174-181. [68] YU C Y, YANG D S, ZHAO D L, et al. Reliability of nano-silver soldering paste with high thermal conductivity[C]//2019 20th International Conference on Electronic Packaging Technology(ICEPT). August 12-15, 2019, Hong Kong, China. IEEE, 2019: 1-4. [69] HERAEUS. Low temperature non-pressure dispensing sinter paste for power electronic applications[EB/OL]. (2020-03-13)[2022-02-25]. https://www.heraeus.com/en/het/products_and_solutions_het/sinter_materials/magic_da295a/magic_da295a.html?_ga=2.237279241.883563861.1645757880-91757731.1636944859. |
[1] | NIE Yuan, XU Antao, LI Shangsheng, HU Meihua, ZHAO Faqing, ZHAO Guiping, HUANG Guofeng, LI Zhanchang, ZHOU Zhenxiang, WANG Mengzhao, CHEN Jiaxi, ZHOU Xubiao. Growth of P-Doped Diamond Large Single Crystals Along (111) Surface with Fe3P as Additive [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 587-593. |
[2] | WU Kongping, ZHANG Leng, WANG Danbei, XIAO Liu, CHEN Zelong, ZHANG Jingchen, ZHANG Pengzhan, LIU Fei, TANG Kun, YE Jiandong, GU Shulin. Stable Configurations of Diamond (001) Surface Covered by Cu with Various Coverages and Their Electronic Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1640-1647. |
[3] | AN Xiaoming, GE Xingang, LIU Xiaochen, LI Yifeng, JIANG Long, LUO Haihan. Preparation of CVD Diamond Window for High Power CO2 Laser [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 1010-1015. |
[4] | TAN Xin, ZHANG Bochen, REN Yuan, CHEN Chengbin, LIU Yuefei. First-Principle Study of Er-Doped Diamond Defects [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 1023-1028. |
[5] | ZHENG Yu, ZHANG Yi, TONG Yaqi, XUAN Zhenwu. Research Progress and Application of Boron-Doped Diamond Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 1138-1148. |
[6] | WANG Yashuai, WANG Yanqing, YANG Shengqiang. Orthogonal Experimental Study on Circular Arc Machining of Hard and Brittle Materials with Diamond Wire Saw [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 900-907. |
[7] | GE Mengran, BI Wenbo. Research Progress on Low Crack Damage Slicing Technology for Single Crystal Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 967-973. |
[8] | JIAN Xiaogang, TANG Jinyao, MA Qianli, HU Jibo, YIN Mingrui. Influence of Hydrogen Impurities in the Subsurface of CVD Diamond Films on Surface Activation Reaction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 302-309. |
[9] | LIU Xiaochen, YU Xinxin, GE Xingang, JIANG Long, LI Yifeng, AN Xiaoming, GUO Hui. Effect of Nitrogen Doping on the Perfomances of the Hydrogen Terminated Diamond RF Transistors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2045-2052. |
[10] | CHEN Jiaxi, ZHANG Xiyun, LI Shangsheng, GUO Mingming, HU Meihua, SU Taichao, HUANG Guofeng, LI Zhanchang, ZHOU Zhenxiang, NIE Yuan, WANG Mengzhao, ZHOU Xubiao. Effect of CaCO3 Doping on Growth Behavior of Type Ⅰb Diamond along Different Crystal Faces [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2053-2059. |
[11] | WANG Mengzhao, XU Antao, LI Shangsheng, GAO Guangjin, HU Meihua, SU Taichao, HUANG Guofeng, LI Zhanchang, ZHOU Zhenxiang, NIE Yuan, CHEN Jiaxi, ZHOU Xubiao. Growth Characteristics of Type Ⅰb Diamonds in FeNi, NiMnCo and Their Composite Catalysts [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2060-2066. |
[12] | WANG He, SHEN Jianhui, YAN Guangyu, WU Yuhou, ZHANG Huisen. Tribological Properties of SiC-Based Diamond Films Synthesized with Different Methane Concentrations [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2067-2074. |
[13] | CHEN Zhengjia, XU Kai, CHEN Guangchao. Temperature-Depending Variation of Lattice of Single Crystal Diamond as Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(1): 25-31. |
[14] | LI Jianjun, FAN Chengxing, CHENG Youfa, LIU Xuesong, WANG Yue, SHAN Guangqi, LI Ting, LI Guihua, DING Xiuyun, ZHAO Xiaoxue, HUANG Zhun, YAN Fei, DU Ran. Review for Frequent Characteristics of Diamond UV-Vis-MIR Spectra [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(1): 158-166. |
[15] | YANG Bing-fei;LIU Jie. Preparation of Pressure Transmitting Medium Composed of Clay Minerals Produced in Henan Province and Enlarged Scale Tests on Diamond Synthesis [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1593-1597. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||