JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (5): 852-864.
Special Issue: 超硬材料与特殊环境晶体生长技术
• Reviews • Previous Articles Next Articles
ZHAO Ziwei1,2, GAO Xiaowu1,2, CAO Wenxin2, LIU Kang2, DAI Bing2, WANG Yongjie1,2, ZHU Jiaqi2
Received:
2022-04-02
Online:
2022-05-15
Published:
2022-06-17
CLC Number:
ZHAO Ziwei, GAO Xiaowu, CAO Wenxin, LIU Kang, DAI Bing, WANG Yongjie, ZHU Jiaqi. Research Progress on the Effects of Surface Functionalization of Nanodiamonds[J]. Journal of Synthetic Crystals, 2022, 51(5): 852-864.
[1] SCHNEIDER A, STEINMUELLER-NETHL D, ROY M, et al. Enhanced tribological performances of nanocrystalline diamond film[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 40-50. [2] SAVVIDES N, BELL T J. Hardness and elastic modulus of diamond and diamond-like carbon films[J]. Thin Solid Films, 1993, 228(1/2): 289-292. [3] RAO T N, FUJISHIMA A. Recent advances in electrochemistry of diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 384-389. [4] 姚凯丽,代 兵,乔鹏飞,等.纳米金刚石材料的研究进展[J].人工晶体学报,2019,48(11):1977-1989. YAO K L, DAI B, QIAO P F, et al. Research progress of nano-diamond materials[J]. Journal of Synthetic Crystals, 2019, 48(11): 1977-1989(in Chinese). [5] ZANG J B, WANG Y H, BIAN L Y, et al. Surface modification and electrochemical behaviour of undoped nanodiamonds[J]. Electrochimica Acta, 2012, 72: 68-73. [6] CHAUHAN S, JAIN N, NAGAICH U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents[J]. Journal of Pharmaceutical Analysis, 2020, 10(1): 1-12. [7] EIVAZZADEH-KEIHAN R, MALEKI A, DE LA GUARDIA M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review[J]. Journal of Advanced Research, 2019, 18: 185-201. [8] LIU Y Y, CHANG B M, CHANG H C. Nanodiamond-enabled biomedical imaging[J]. Nanomedicine, 2020, 15(16): 1599-1616. [9] TORELLI M D, NUNN N A, SHENDEROVA O A. A perspective on fluorescent nanodiamond bioimaging[J]. Small, 2019, 15(48): 1902151. [10] 孙贵磊.爆轰技术在纳米碳材料制备中的应用进展[J].工程爆破,2012,18(2):79-82. SUN G L. The using process of detonation technique in preparation of nano-carbon materials[J]. Engineering Blasting, 2012, 18(2): 79-82(in Chinese). [11] DANILENKO V V. On the history of the discovery of nanodiamond synthesis[J]. Physics of the Solid State, 2004, 46(4): 595-599. [12] MOCHALIN V N, SHENDEROVA O, HO D, et al. The properties and applications of nanodiamonds[J]. Nature Nanotechnology, 2012, 7(1): 11-23. [13] DUAN X G, TIAN W J, ZHANG H Y, et al. sp2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis[J]. ACS Catalysis, 2019, 9(8): 7494-7519. [14] OSSWALD S, YUSHIN G, MOCHALIN V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air[J]. Journal of the American Chemical Society, 2006, 128(35): 11635-11642. [15] KRUEGER A, LANG D. Functionality is key: recent progress in the surface modification of nanodiamond[J]. Advanced Functional Materials, 2012, 22(5): 890-906. [16] KRUEGER A. The structure and reactivity of nanoscale diamond[J]. Journal of Materials Chemistry, 2008, 18(13): 1485. [17] 苏党生.纳米碳催化[M].北京:科学出版社,2014. SU D S. Nano carbon catalysis[M]. Beijing: Science Press, 2014(in Chinese). [18] 李丹丹,陈 鑫,王 宏,等.三维拉曼成像技术用于纳米金刚石与细胞相互作用过程的研究[J].光谱学与光谱分析,2018,38(9):2770-2777. LI D D, CHEN X, WANG H, et al. Visualization of the interaction between NDs and cells with 3D Raman imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2770-2777(in Chinese). [19] ARNAULT J C, PETIT T, GIRARD H, et al. Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(24): 11481-11487. [20] ULLAH M, KAUSAR A, SIDDIQ M, et al. Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review[J]. Polymer-Plastics Technology and Engineering, 2015, 54(8): 861-879. [21] SHAKUN A, VUORINEN J, HOIKKANEN M, et al. Hard nanodiamonds in soft rubbers: past, present and future-a review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 49-69. [22] LIU Y, GU Z N, MARGRAVE J L, et al. Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives[J]. Chemistry of Materials, 2004, 16(20): 3924-3930. [23] KHABASHESKU V N, MARGRAVE J L, BARRERA E V. Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 859-866. [24] WANG Y H, HUANG H, ZANG J B, et al. Electrochemical behavior of fluorinated and aminated nanodiamond[J]. International Journal of Electrochemical Science, 2012, 7(8): 6807-6815. [25] NEITZEL I, MOCHALIN V N, NIU J, et al. Maximizing Young's modulus of aminated nanodiamond-epoxy composites measured in compression[J]. Polymer, 2012, 53(25): 5965-5971. [26] GOGOTSI Y. Nanomaterials Handbook[M]. Boca Raton: CRC Press, 2006. [27] MOCHALIN V N, GOGOTSI Y. Nanodiamond-polymer composites[J]. Diamond and Related Materials, 2015, 58: 161-171. [28] ASHASSI-SORKHABI H, ES'HAGHI M. Corrosion protection of mild steel by nano-colloidal polyaniline/nanodiamond composite coating in NaCl solution[J]. Journal of Coatings Technology and Research, 2014, 11(3): 371-380. [29] ASHASSI-SORKHABI H, BAGHERI R, REZAEI-MOGHADAM B. Corrosion protection properties of PPy-ND composite coating: sonoelectrochemical synthesis and design of experiment[J]. Journal of Materials Engineering and Performance, 2016, 25(2): 611-622. [30] ROUMELI E, PAVLIDOU E, AVGEROPOULOS A, et al. Factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene[J]. The Journal of Physical Chemistry B, 2014, 118(38): 11341-11352. [31] MORIMUNE-MORIYA S, YADA S, KUROKI N, et al. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66[J]. Composites Science and Technology, 2020, 199: 108356. [32] KIM S H, RHEE K Y, PARK S J. Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: thermal conductivity and fracture resistance[J]. Composites Part B: Engineering, 2020, 192: 107983. [33] BEHLER K D, STRAVATO A, MOCHALIN V, et al. Nanodiamond-polymer composite fibers and coatings[J]. ACS Nano, 2009, 3(2): 363-369. [34] MORIMUNE S, KOTERA M, NISHINO T, et al. Poly(vinyl alcohol) nanocomposites with nanodiamond[J]. Macromolecules, 2011, 44(11): 4415-4421. [35] JEE A Y, LEE M. Thermal and mechanical properties of alkyl-functionalized nanodiamond composites[J]. Current Applied Physics, 2011, 11(5): 1183-1187. [36] MORIMUNE-MORIYA S, SALAJKOVA M, ZHOU Q, et al. Reinforcement effects from nanodiamond in cellulose nanofibril films[J]. Biomacromolecules, 2018, 19(7): 2423-2431. [37] JEE A Y, LEE M. Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(1): 533-536. [38] ZHAO X X, WANG T, LI Y Y, et al. Polydimethylsiloxane/nanodiamond composite sponge for enhanced mechanical or wettability performance[J]. Polymers, 2019, 11(6): 948. [39] MOCHALIN V N, NEITZEL I, ETZOLD B J M, et al. Covalent incorporation of aminated nanodiamond into an epoxy polymer network[J]. ACS Nano, 2011, 5(9): 7494-7502. [40] NEITZEL I, MOCHALIN V, KNOKE I, et al. Mechanical properties of epoxy composites with high contents of nanodiamond[J]. Composites Science and Technology, 2011, 71(5): 710-716. [41] WANG Q, ZHANG J, SHI W, et al. Coordinating mechanical performance and fire safety of epoxy resin via functionalized nanodiamond[J]. Diamond and Related Materials, 2020, 108: 107964. [42] ZHANG Q X, NAITO K, TANAKA Y, et al. Grafting polyimides from nanodiamonds[J]. Macromolecules, 2008, 41(3): 536-538. [43] KHAN M, HAMID A, LI T H, et al. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites[J]. Diamond and Related Materials, 2020, 107: 107897. [44] YANG J H, WANG D E, HAN H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909. [45] SU L X, CAO Y, HAO H S, et al. Emerging applications of nanodiamonds in photocatalysis[J]. Functional Diamond, 2021, 1(1): 93-109. [46] BAGHERI S, MUHD JULKAPLI N. Nano-diamond based photocatalysis for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31538-31554. [47] DU H, LIU Y N, SHEN C C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2017, 38(8): 1295-1306. [48] LV X W, WENG C C, YUAN Z Y. Ambient ammonia electrosynthesis: current status, challenges, and perspectives[J]. ChemSusChem, 2020, 13(12): 3061-3078. [49] ZHU D, ZHANG L H, RUTHER R E, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nature Materials, 2013, 12(9): 836-841. [50] KRAINSKY I L, ASNIN V M. Negative electron affinity mechanism for diamond surfaces[J]. Applied Physics Letters, 1998, 72(20): 2574-2576. [51] ZHU D, BANDY J A, LI S, et al. Amino-terminated diamond surfaces: photoelectron emission and photocatalytic properties[J]. Surface Science, 2016, 650: 295-301. [52] ZHANG L H, ZHU D, NATHANSON G M, et al. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons[J]. Angewandte Chemie International Edition, 2014, 53(37): 9746-9750. [53] ZHANG L H, HAMERS R J. Photocatalytic reduction of CO2 to CO by diamond nanoparticles[J]. Diamond and Related Materials, 2017, 78: 24-30. [54] JANG D M, MYUNG Y, IM H S, et al. Nanodiamonds as photocatalysts for reduction of water and graphene oxide[J]. Chemical Communications (Cambridge, England), 2012, 48(5): 696-698. [55] KHAN M, HAYAT A, BABURAO MANE S K, et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29070-29081. [56] LIN Z Y, XIAO J, LI L H, et al. Nanodiamond-embedded p-type copper (Ⅰ) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(4): 1501865. [57] 王建龙,初里冰.电离辐照技术在废水处理中的研究进展[J].环境工程学报,2017,11(2):653-672. WANG J L, CHU L B. Research progress of ionizing irradiation technology on wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 653-672(in Chinese). [58] PAN J J, GUO F, SUN H R, et al. Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity[J]. Journal of Materials Science, 2021, 56(11): 6663-6675. [59] HUNGE Y M, YADAV A A, KHAN S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination[J]. Journal of Colloid and Interface Science, 2021, 582: 1058-1066. [60] SU L X, LIU Z Y, YE Y L, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19805-19815. [61] PASTRANA-MARTÍNEZ L M, MORALES-TORRES S, CARABINEIRO S A C, et al. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation[J]. Applied Surface Science, 2018, 458: 839-848. [62] CHENG C Y, PEREVEDENTSEVA E, TU J S, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling[J]. Applied Physics Letters, 2007, 90(16): 163903. [63] CHAO J I, PEREVEDENTSEVA E, CHUNG P H, et al. Nanometer-sized diamond particle as a probe for biolabeling[J]. Biophysical Journal, 2007, 93(6): 2199-2208. [64] HEBISCH E, HJORT M, VOLPATI D, et al. Nanostraw-assisted cellular injection of fluorescent nanodiamonds via direct membrane opening[J]. Small, 2021, 17(7): 2006421. [65] LIU K K, WANG C C, CHENG C L, et al. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells[J]. Biomaterials, 2009, 30(26): 4249-4259. [66] SIMPSON D A, MORRISROE E, MCCOEY J M, et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping[J]. ACS Nano, 2017, 11(12): 12077-12086. [67] IGARASHI R, SUGI T, SOTOMA S, et al. Tracking the 3D rotational dynamics in nanoscopic biological systems[J]. Journal of the American Chemical Society, 2020, 142(16): 7542-7554. [68] MILLER B S, BEZINGE L, GLIDDON H D, et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics[J]. Nature, 2020, 587(7835): 588-593. [69] HENS S C, CUNNINGHAM G, TYLER T, et al. Nanodiamond bioconjugate probes and their collection by electrophoresis[J]. Diamond and Related Materials, 2008, 17(11): 1858-1866. [70] MKANDAWIRE M, POHL A, GUBAREVICH T, et al. Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells[J]. Journal of Biophotonics, 2009, 2(10): 596-606. [71] ZHAO L, XU Y H, QIN H M, et al. Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug[J]. Advanced Functional Materials, 2014, 24(34): 5348-5357. [72] XING Y, XIONG W, ZHU L, et al. DNA damage in embryonic stem cells caused by nanodiamonds[J]. ACS Nano, 2011, 5(3): 2376-2384. [73] ZHANG X Y, HU W B, LI J, et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond[J]. Toxicology Research, 2012, 1(1): 62-68. [74] GUAN B, ZOU F, ZHI J F. Nanodiamond as the pH-responsive vehicle for an anticancer drug[J]. Small, 2010, 6(14): 1514-1519. [75] GAO G Y, LIU R Z, GUO Q Y, et al. The effect of carboxylated nanodiamonds on tumor cells migration[J]. Diamond and Related Materials, 2020, 105: 107809. [76] GUO Q Y, LI L, GAO G Y, et al. Nanodiamonds inhibit cancer cell migration by strengthening cell adhesion: implications for cancer treatment[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9620-9629. [77] WU Y Z, ERMAKOVA A, LIU W N, et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds[J]. Advanced Functional Materials, 2015, 25(42): 6576-6585. [78] QIN S R, ZHAO Q, CHENG Z G, et al. Rare earth-functionalized nanodiamonds for dual-modal imaging and drug delivery[J]. Diamond and Related Materials, 2019, 91: 173-182. [79] 孙陶利,王 斌,彭 雁,等.羧基纳米金刚石作为抗肿瘤药物:鬼臼毒素胞内转运载体[J].药学学报,2013,48(1):149-154. SUN T L, WANG B, PENG Y, et al. Carboxyl nanodiamond as intracellular transporters of anticancer drug: podophyllotoxin[J]. Acta Pharmaceutica Sinica, 2013, 48(1): 149-154(in Chinese). [80] AKHTAR N, AKRAM M, ASIF H M, et al. Gene therapy: a review article[J]. Journal of Medicinal Plant Research, 2011, 5(18): 1812-1817. [81] LIM D G, RAJASEKARAN N, LEE D, et al. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31543-31556. |
[1] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[2] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
[3] | LIU Hong, LIU Huarong, FAN Ximei. Surface Modification of Tetrapod-Like ZnO Whisker by Cuprous Oxide and Its Photocatalytic Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1042-1050. |
[4] | WU Lihai, YU Puliang, ZHONG Min. First Principles Study on the Structure, Mechanics, Electronic and Optical Properties of Ternary Layered Nitride M2AlN (M=Ti, Zr) under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 656-668. |
[5] | WANG Yunjie, ZHANG Zhiyuan, WEN Dulin, WU Zhencheng, SU Xin. First Principles Study on Mechanical Properties, Electronic Structure and Optical Properties of Ni, Cu, Zn Doped Tetragonal PbTiO3 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 258-266. |
[6] | ZHANG Yanping, GAO Peng, LI Jianbao, WANG Min, WAN Weimin, CHEN Yongjun. Ruthenium Dopant in Ni3N Catalyst for Electrocatalytic Hydrogen Evolution Reaction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1698-1706. |
[7] | LIU Xiaohui, LI Hui, XU Na. Synthesis and Electrocatalytic Performance of a Polyoxometalate-Based Supramolecular Compound Constructed with Reduced Phosphomolybdate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2034-2040. |
[8] | CHENG Xuerui, HUANGFU Zhanbiao, CAI Yule, WU Xiwang, YANG Kun. Structure, Optical Properties and Thermal Stability of Nanodiamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(5): 920-925. |
[9] | LIU Manman, WANG Yuequn, XIONG Junjie, ZHANG Wenjie, KONG Shuyan, YANG Xiaoming, WANG Zujian, LONG Xifa, HE Chao. Electromechanical Properties of Ferroelectric Single Crystal PIN-PT with High Curie Temperature [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 579-586. |
[10] | ZHENG Wenli, LIU Jiaqi, WU Zhaoyang, LIU Mengfan, ZHANG Hengqiang, HAN Wei. Preparation of Tin Dioxide/Bismuth Tungstate Composite Photocatalytic Materials by Hydrothermal Method and Its Catalytic Activity [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(3): 502-507. |
[11] | LI Rui, ZHANG Xiao, ZHANG Lulu, XIE Fangxia, ZHANG Xiaochao, WANG Yawen, FAN Caimei. In-Situ Preparation of Bi3O4Br/Bi12O17Br2 Photocatalyst and Their Degradation Performances of Sulfamethoxazole [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1735-1744. |
[12] | QIN Yang, ZHANG Qinghong, WANG Ruili, LIU Mei. Preparation of High Performance Brush-Like Zinc Oxide Mesocrystals and Its Reinforcing Effect on Properties of Resin Composites [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 548-557. |
[13] | YANG Yun, SHI Xinyue, WU Hongya, QIN Shengjian, ZHANG Guanglei. Research Progress in Molecular Dynamics Simulation of SiO2 Aerogels [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 397-406. |
[14] | XU Na, WANG Jinling, ZHANG Zhong, LI Xiaohui, CHANG Zhihan. Structure and Electrocatalytic Performance of a Keggin-Type Polyoxometalate-Based Supramolecular Complex H3[{H(4-AP)}6(PMoV6MoVI6O40)] [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2123-2128. |
[15] | CHANG Yongqiang, WANG Jingqin, ZHU Yancai, ZHANG Guangzhi, HU Delin. Simulation Analysis of the Effect of Ni and Mo Co-Doping on the Properties of SnO2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(1): 94-101. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||