JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (9-10): 1573-1587.
• Reviews • Previous Articles Next Articles
ZHAO Chengchun1, ZHANG Peixiong1,2, LI Shanming1, FANG Qiannan1, XU Min1, CHEN Zhenqiang2, HANG Yin1
Received:2022-07-19
Online:2022-10-15
Published:2022-11-02
CLC Number:
ZHAO Chengchun, ZHANG Peixiong, LI Shanming, FANG Qiannan, XU Min, CHEN Zhenqiang, HANG Yin. Development of Rare-Earth Ion Doped Fluoride Laser Crystal[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1573-1587.
| [1] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225. [2] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405. [3] LI W Q, GAN Z B, YU L H, et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684. [4] OKADA F, TOGAWA S, OHTA K, et al. Solid-state ultraviolet tunable laser: a Ce3+ doped LiYF4 crystal[J]. Journal of Applied Physics, 1994, 75(1): 49-53. [5] MA C Q, ZHANG Y, GUO J W, et al. A 3.9 μm Ho3+∶BaY2F8 laser directly pumped by laser diodes[J]. Electronics Letters, 2021, 57(20): 779-781. [6] LIU H L, ZHAO Z X, XIA J, et al. Tunable Pr3+∶LiYF4 lasers in the green-red spectral region[J]. Journal of Applied Physics, 2021, 129(8): 083102. [7] SALAÜN S, FORNONI M T, BULOU A, et al. Lattice dynamics of fluoride scheelites: I. Raman and infrared study of LiYF4 and LiLnY4 (Ln∶Ho, Er, Tm and Yb)[J]. Journal of Physics: Condensed Matter, 1997, 9(32): 6941-6956. [8] AUZEL F, PELLÉ F. Bottleneck in multiphonon nonradiative transitions[J]. Physical Review B, 1997, 55(17): 11006-11009. [9] SOROKIN P P, STEVENSON M J. Stimulated infrared emission from trivalent uranium[J]. Physical Review Letters, 1960, 5(12): 557-559. [10] KAISER W, GARRETT C G B, WOOD D L. Fluorescence and optical maser effects in CaF2∶Sm++[J]. Physical Review, 1961, 123(3): 766-776. [11] KAMINSKII A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Review, 2007, 1(2): 93-177. [12] NIE H K, ZHANG P X, ZHANG B T, et al. Diode-end-pumped Ho, Pr∶LiLuF4 bulk laser at 2.95 μm[J]. Optics Letters, 2017, 42(4): 699-702. [13] ŠVEJKAR R, ŠULC J, NĚMEC M, et al. Compact diode-pumped CW and Q-switched 2.8 μm Er∶YLF laser[J]. Josa B, 2021, 38(8): B26-B29. [14] SIDERS, GALVIN, ERLANDSON, et al. Wavelength scaling of laser Wakefield acceleration for the EuPRAXIA design point[J]. Instruments, 2019, 3(3): 44. [15] TAMER I, REAGAN B A, GALVIN T, et al. Demonstration of a compact, multi-joule, diode-pumped Tm∶YLF laser[J]. Optics Letters, 2021, 46(20): 5096-5099. [16] WANG C, WEI H, WANG J F, et al. 1 J, 1 Hz lamp-pumped high-gain Nd∶phosphate glass laser amplifier[J]. Chinese Optics Letters, 2017, 15(1): 011401. [17] QIN Z P, XIE G Q, MA J, et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y∶CaF2 disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739. [18] ZHU J F, ZHANG L J, GAO Z Y, et al. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser[J]. Laser Physics Letters, 2015, 12(3): 035801. [19] METZ P W, HASSE K, PARISI D, et al. Continuous-wave Pr3+∶BaY2F8 and Pr3+∶LiYF4 lasers in the cyan-blue spectral region[J]. Optics Letters, 2014, 39(17): 5158-5161. [20] OSTROUMOV V, SEELERT W. 1 W of 261 nm CW generation in a Pr3+∶LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6871, Solid State Lasers XVII: Technology and Devices, San Jose, California, USA. 2008, 6871: 450-453. [21] LIN X J, ZHU Y, JI S H, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+∶YLF lasers[J]. Optics & Laser Technology, 2020, 129: 106281. [22] LIN X J, CHEN M P, FENG Q C, et al. LD-pumped high-power CW Pr3+∶YLF laguerre-Gaussian lasers at 639 nm[J]. Optics & Laser Technology, 2021, 142: 107273. [23] LUO S Y, YAN X G, CUI Q, et al. Power scaling of blue-diode-pumped Pr∶YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm[J]. Optics Communications, 2016, 380: 357-360. [24] SOTTILE A, PARISI D, TONELLI M. Multiple polarization orange and red laser emissions with Pr∶BaY2Fs[J]. Optics Express, 2014, 22(11): 13784-13791. [25] YU H, QIAN X B, GUO L Y, et al. Pr∶Ca1-xRxF2+x (R=Y or Gd) crystals: modulated blue, orange and red emission spectra with the proportion of R3+ ions[J]. Optical Materials, 2018, 78: 88-93. [26] KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568. [27] CASTELLANO-HERNÁNDEZ E, KALUSNIAK S, METZ P W, et al. Diode-pumped laser operation of Tb 3+∶LiLuF4 in the green and yellow spectral range[J]. Laser & Photonics Reviews, 2020, 14(2): 1900229. [28] DUBINSKII M A, CEFALAS A C, SARANTOPOULOU E, et al. Efficient LaF3∶Nd3+-based vacuum-ultraviolet laser at 172 nm[J]. Josa B, 1992, 9(7): 1148-1150. [29] COUTTS D W, MCGONIGLE A J S. Cerium-doped fluoride lasers[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1430-1440. [30] VOLPI A, KRÄMER K W, BINER D, et al. Bridgman growth of laser-cooling-grade LiLuF4∶Yb3+ single crystals[J]. Crystal Growth & Design, 2021, 21(4): 2142-2153. [31] HEHLEN M P, MENG J W, ALBRECHT A R, et al. First demonstration of an all-solid-state optical cryocooler[J]. Light: Science & Applications, 2018, 7: 15. [32] YANG Z, MENG J W, ALBRECHT A R, et al. Radiation-balanced thin-disk lasers in Yb∶YAG and Yb∶YLF (conference presentation)[C]//SPIE OPTO. Proc SPIE 10936, Photonic Heat Engines: Science and Applications, San Francisco, California, USA. 2019, 10936: 109360O. [33] ROGIN P, HULLIGER J. Liquid phase epitaxy of LiYF4[J]. Journal of Crystal Growth, 1997, 179(3/4): 551-558. [34] THOMA R E, BRUNTON G D, PENNEMAN R A, et al. Equilibrium relations and crystal structure of lithium fluorolanthanate phases[J]. Inorganic Chemistry, 1970, 9(5): 1096-1101. [35] ZHANG P X, YIN J G, ZHANG B T, et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal[J]. Optics Letters, 2014, 39(13): 3942-3945. [36] LAIHO R, LAKKISTO M. Investigation of the refractive indices of LaF3, CeF3, PrF3 and NdF3[J]. Philosophical Magazine B, 1983, 48(2): 203-207. [37] VASYLIEV V, VILLORA E G, NAKAMURA M, et al. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE=Tb, Dy, Ho, Er and Yb), PrF3 and CeF3[J]. Optics Express, 2012, 20(13): 14460-14470. [38] AGGARWAL R L, RIPIN D J, OCHOA J R, et al. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range[J]. Journal of Applied Physics, 2005, 98(10): 103514. [39] KLEIN P H, CROFT W J. Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K[J]. Journal of Applied Physics, 1967, 38(4): 1603-1607. [40] AGGARWAL I D, SHAW L B, SANGHERA J S. Chalcogenide glass fiber-based MID-IR sources and applications[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6453, Fiber Lasers Ⅳ: Technology, Systems, and Applications, San Jose, California, USA. 2007, 6453: 232-241. [41] PRATISTO H, FRENZ M, ITH M, et al. Temperature and pressure effects during erbium laser stapedotomy[J]. Lasers in Surgery and Medicine, 1996, 18(1): 100-108. [42] VODOPYANOV K L. Mid-infrared optical parametric generator with extra-wide (3-19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells[J]. Josa B, 1999, 16(9): 1579-1586. [43] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128. [44] WANG J T, CHENG T Q, WANG L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er∶YSGG laser[J]. Laser Physics Letters, 2015, 12(10): 105004. [45] RABINOVICH W S, BOWMAN S R, FELDMAN B J, et al. Tunable laser pumped 3 μm Ho∶YAlO3 laser[J]. IEEE Journal of Quantum Electronics, 1991, 27(4): 895-897. [46] DJEU N, HARTWELL V E, KAMINSKII A A, et al. Room-temperature 3.4 μm Dy∶BaYb2F8 laser[J]. Optics Letters, 1997, 22(13): 997-999. [47] SANDROCK T, DIENING A, HUBER G. Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 μm[J]. Optics Letters, 1999, 24(6): 382-384. [48] ZHANG P X, HANG Y, LI Z, et al. Sensitization and deactivation effects of Nd3+ on the Ho3+∶3.9 μm emission in a PbF2 crystal[J]. Optics Letters, 2017, 42(13): 2559-2562. [49] WANG Y, LI J F, ZHU Z J, et al. Mid-infrared emission in Dy∶YAlO3 crystal[J]. Optical Materials Express, 2014, 4(6): 1104-1111. [50] ZHANG P X, ZHANG B T, HONG J Q, et al. Enhanced emission of 2.86 μm from diode-pumped Ho3+/Yb3+-codoped PbF2 crystal[J]. Optics Express, 2015, 23(4): 3920-3927. [51] ZHANG P X, HANG Y, ZHANG L H. Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal[J]. Optics Letters, 2012, 37(24): 5241-5243. [52] LI S M, ZHANG L H, HE M Z, et al. Effective enhancement of 2.87 μm fluorescence via Yb3+ in Ho3+∶LaF3 laser crystal[J]. Journal of Luminescence, 2018, 203: 730-734. [53] LI S M, ZHANG L H, HE M Z, et al. Nd3+ as effective sensitizing and deactivating ions for the 2.87 μm lasers in Ho3+ doped LaF3 crystal[J]. Journal of Luminescence, 2019, 208: 63-66. [54] LI X, ZHANG P X, ZHU S Q, et al. Enhanced 2.75 μm emissions of Er3+ via Eu3+ deactivation in PbF2 crystal[J]. Journal of Luminescence, 2019, 210: 164-168. [55] WANG Y H, ZHANG P X, LI X, et al. Spectroscopy and energy transfer mechanism of Tb3+ strengthened Er3+ 27 μm emission in PbF2 crystal[J]. Optical Materials Express, 2018, 9(1): 13. [56] LI X, ZHANG P X, YIN H, et al. Sensitization and deactivation effects of Nd3+ on the Er3+: 2.7 μm emission in PbF2 crystal[J]. Optical Materials Express, 2019, 9(4): 1698-1708. [57] LI S M, ZHANG L H, ZHANG P X, et al. Nd3+ as effective sensitization and deactivation ions in Nd, Er∶LaF3 crystal for the 2.7 μm lasers[J]. Journal of Alloys and Compounds, 2020, 827: 154268. [58] WANG Y H, JIANG C, ZHANG P X, et al. Bandwidth enhancement of 3 μm emission and energy transfer mechanism in Yb3+/Ho3+/Dy3+ co-doped PbF2 crystal[J]. Journal of Luminescence, 2019, 212: 160-165. [59] WANG Y H, ZHANG P X, ZHU S Q, et al. Broadened effect of Dy around 3 μm of Yb/Er/Dy∶PbF2 crystal for broadband tunable lasers[J]. Journal of the American Ceramic Society, 2020, 103(8): 4445-4452. [60] HUANG X B, WANG Y H, ZHANG P X, et al. Efficiently strengthen and broaden 3 μm fluorescence in PbF2 crystal by Er3+/Ho3+ as co-luminescence centers and Pr3+ deactivation[J]. Journal of Alloys and Compounds, 2019, 811: 152027. [61] FAN M Q, LI T, LI G Q, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser with graphitic carbon nitride nanosheet film[J]. Optics Express, 2017, 25(11): 12796-12803. [62] NIE H K, ZHANG P X, ZHANG B T, et al. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+∶LiLuF4 bulk laser at 2.95 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-5. [63] YANG Y L, NIE H K, ZHANG B T, et al. Passively Q-switched mode-locked Ho, Pr∶LiLuF4 laser operating at 2.9 μm with semiconductor saturable absorber mirror[J]. Applied Physics Express, 2018, 11(11): 112704. [64] GUO L, LI T, ZHANG S Y, et al. Passively Q-switched Ho, Pr∶LiLuF4 bulk laser at 295 μm using WS2 saturable absorbers[J]. Optical Materials Express, 2017, 7(6): 2090. [65] LIU X, ZHANG S, YAN Z, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr∶LLF laser at 2.95 μm[J]. Optical Materials Express, 2018, 8(5): 1213-1220. [66] FAN X W, NIE H K, ZHAO S, et al. MXene saturable absorber for nanosecond pulse generation in a mid-infrared Ho, Pr∶LLF bulk laser[J]. Optical Materials Express, 2019, 9(10): 3977-3984. [67] ZHANG S Y, LIU X X, GUO L, et al. Passively Q-switched Ho, Pr∶LLF bulk slab laser at 2.95 μm based on MoS2 saturable absorber[J]. IEEE Photonics Technology Letters, 2017, 29(24): 2258-2261. [68] YAN Z Y, LI G Q, LI T, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser at 2.95 μm using MoSe2[J]. IEEE Photonics Journal, 2017, 9(5): 1-7. [69] YANG Y L, ZHANG L H, LI S M, et al. Growth and mid-infrared luminescence property of Ho3+ doped CeF3 single crystal[J]. Infrared Physics & Technology, 2020, 105: 103230. [70] XIONG J, PENG H Y, HU P C, et al. Optical characterization of Tm3+ in LiYF4 and LiLuF4 crystals[J]. Journal of Physics D: Applied Physics, 2010, 43(18): 185402. [71] YIN J G, HANG Y, HE X H, et al. Transition intensities and excited state relaxation dynamics of Tm3+ in Tm∶PbF2 crystal[J]. Laser Physics, 2012, 22(3): 609-613. [72] HONG J Q, ZHANG L H, XU M, et al. Optical characterization of Tm3+ in LaF3 single crystal[J]. Infrared Physics & Technology, 2017, 82: 50-55. [73] ZHAO C C, HANG Y, ZHANG L H, et al. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers[J]. Optical Materials, 2011, 33(11): 1610-1615. [74] ZHANG P X, ZHANG L H, HONG J Q, et al. Spectroscopic properties of Ho3+-doped PbF2 single crystal for 2 μm[J]. Optical Materials, 2015, 46: 389-392. [75] HONG J Q, ZHANG L H, ZHANG P X, et al. Ho∶LaF3 single crystal as potential material for 2 μm and 2.9 μm lasers[J]. Infrared Physics & Technology, 2016, 76: 636-640. [76] CHENG X J, ZHANG S Y, XU J, et al. High-power diode-end-pumped Tm∶LiLuF4 slab lasers[J]. Optics Express, 2009, 17(17): 14895-14901. [77] 陈光珠,杭 寅,彭海燕,等.Tm∶YLiF4激光晶体的生长及性能研究[J].光学学报,2011,31(1):209-212. CHEN G Z, HANG Y, PENG H Y, et al. Growth and spectral properties of Tm∶YLiF4 cystals[J]. Acta Optica Sinica, 2011, 31(1): 209-212(in Chinese). [78] ZHANG P X, WAN Y B, YIN J G, et al. Low-phonon PbF2∶Tm3+-doped crystal for 1.9 μm lasing[J]. Laser Physics Letters, 2014, 11(11): 115802. [79] LI S M, ZHANG L H, LI C, et al. Growth, thermal conductivity, spectra, and 2 μm continuous-wave characteristics of Tm3+, Ho3+ co-doped LaF3 crystal[J]. Journal of Luminescence, 2019, 210: 142-145. [80] ZHANG Y S, CAI Y Q, XU B, et al. Extending the wavelength tunability from 2.01 to 2.1 μm and simultaneous dual-wavelength operation at 2.05 and 2.3 μm in diode-pumped Tm∶YLF lasers[J]. Journal of Luminescence, 2020, 218: 116873. [81] PENG H Y, ZHANG K, ZHANG L H, et al. Spectral properties and laser performance of Tm, Ho∶LuLF4 crystal[C]//Proc SPIE 7276, Photonics and Optoelectronics Meetings (POEM) 2008: Laser Technology and Applications, 2009, 7276: 185-192. [82] 宁凯杰,彭海燕,赵呈春,等.Tm∶Ho∶LuLiF4激光晶体生长和性能[C]//第十六届全国晶体生长与材料学术会议论文集-07新材料、新方法、新器件和设备.合肥,2012:18. NING K J, PENG H Y, ZHAO C C, et al. Growth and properties of .Tm∶Ho∶LuLiF4 laser crystal[C]//Proceedings of the 16th National Conference on Crystal Growth and Materials: 07 New Materials, New Methods, New Devices and Equipment. Heifei, 2012: 18(in Chinese). [83] 徐 林,唐玉龙,张帅一,等.高功率脉冲2 μm光纤主振荡功率放大器系统[J].中国激光,2010,37(9):2384-2388. XU L, TANG Y L, ZHANG S Y, et al. High power pulsed 2 μm fiber main oscillator power-amplifier system[J]. Chinese Journal of Lasers, 2010,37(9):2384-2388(in Chinese). [84] CHENG X J, XU J Q, HANG Y, et al. High-power diode-end-pumped Tm∶YAP and Tm∶YLF slab lasers[J]. Chinese Optics Letters, 2011, 9(9): 091406. [85] DAI Y F, LI Y Y, ZOU X, et al. Compact passively Q-switched Tm∶YLF laser with a polycrystalline Cr∶ZnS saturable absorber[J]. Optics & Laser Technology, 2014, 57: 202-205. [86] ZOU X, LENG Y X, LI Y Y, et al. Passively Q-switched mode-locked Tm∶LLF laser with a MoS2 saturable absorber[J]. Chinese Optics Letters, 2015, 13(8): 081405. [87] LÜ Y F, YIN X D, XIA J, et al. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm[J]. Laser Physics Letters, 2009, 6(12): 860. [88] ZHAO C C, ZHANG L H, HANG Y, et al. Optical spectroscopy of Nd3+ in LiLuF4 single crystals[J]. Journal of Physics D: Applied Physics, 2010, 43(49): 495403. [89] ZHAO C C, HE M Z, HANG Y, et al. Spectroscopic characterization and diode-pumped 910 nm laser of Nd∶LiLuF4 crystal[J]. Laser Physics, 2012, 22(5): 918-921. [90] LI R, YU T, ZHANG L H, et al. 1047-nm all-solid-state laser based on Nd∶LuLF[J]. Chinese Optics Letters, 2011, 9(2): 55-56. [91] ZHANG P X, YIN J G, ZHANG R, et al. Crystal growth, spectroscopic characterization and laser performance of Tm/Mg∶LiNbO3 crystal[J]. Laser Physics, 2014, 24(3): 263-268 [92] WANG M, ZHANG S, TANG Y, et al. Performance of actively Q-switched Nd∶LiLuF4 crystal end-pumped by a 792 nm laser diode[J]. Applied Physics B, 2011, 104(4): 829-833. [93] LI H Q, ZHANG R, TANG Y L, et al. Efficient dual-wavelength Nd∶LuLiF4 laser[J]. Optics Letters, 2013, 38(21): 4425-4428. [94] ZHANG P X, WAN Y B, YIN J G, et al. Spectroscopic, thermal and laser characteristics of Nd∶LiLuF4 for 1314 nm laser[J]. Laser Physics Letters, 2014, 11(11): 115803. [95] HONG J Q, ZHANG L H, ZHANG P X, et al. Growth, optical characterization and evaluation of laser properties of Nd∶LaF3 crystal[J]. Journal of Alloys and Compounds, 2015, 646: 706-709. [96] YANG Y L, ZHANG L H, QUAN C, et al. Growth, thermal, and polarized spectroscopic properties of Nd∶CeF3 crystal for dual-wavelength lasers[J]. Journal of Luminescence, 2020, 227: 117558. [97] HONG J Q, ZHANG L H, LI J, et al. Spectroscopic, thermal and CW dual-wavelength laser characteristics of Nd∶LaF3 single crystal[J]. Optical Materials, 2016, 53: 10-13. [98] YIN J G, HANG Y, LIANG X Y, et al. Yb, Na∶PbF2: a potential new high-power laser material[J]. Optics Letters, 2010, 35(20): 3435-3437. [99] YIN J G, HANG Y, HE X M, et al. Crystal growth and spectroscopic characterization of Yb-doped and Yb, Na-codoped PbF2 laser crystals[J]. Journal of Alloys and Compounds, 2011, 509(23): 6567-6570. [100] YIN J G, HANG Y, HE X M, et al. Room-temperature diode-pumped Yb, Na∶PbF2 laser[J]. Optics Letters, 2012, 37(1): 109-111. [101] YIN J G, HANG Y, HE X M, et al. Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature[J]. Laser Physics Letters, 2012, 9(2): 126-130. [102] AGNESI A, GREBORIO A, PIRZIO F, et al. Femtosecond Nd∶glass lasers pumped by single-mode laser diodes and mode locked with carbon nanotube or semiconductor saturable absorber mirrors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 74-80. [103] RYAN J R, BEACH R. Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride[J]. Josa B, 1992, 9(10): 1883-1887. [104] LI C, LENG Y X, LI S M, et al. Demonstration of diode-pumped Yb∶LaF3 and Tm, Ho∶LaF3 lasers[J]. Applied Sciences, 2019, 9(2): 334. [105] NAKATSU Y, NAGAO Y, KOZURU K, et al. High-efficiency blue and green laser diodes for laser displays[C]//SPIE OPTO. Proc SPIE 10918, Gallium Nitride Materials and Devices XIV, San Francisco, California, USA. 2019, 10918: 99-107. [106] LING Z, YI Y, YANG Z, et al. All-solid-state dual end pumped YVO4∶Nd/LBO blue laser with 21.8 W output power at 457 nm[J]. Optics and Spectroscopy, 2014, 116(3): 470-472. [107] KANTOLA E, LEINONEN T, RANTA S N, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22(6): 6372-6380. [108] SANDROCK T, SCHEIFE H, HEUMANN E, et al. High-power continuous-wave upconversion fiber laser at room temperature[J]. Optics Letters, 1997, 22(11): 808-810. [109] LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. Journal of Inorganic Materials, 2019, 34(6): 573. [110] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds[J]. Physical Review B Condensed Matter, 2000, 62(23): 15640-15649. [111] BOWMAN S R, O'CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers[J]. Optics Express, 2012, 20(12): 12906-12911. [112] LIMPERT J, ZELLMER H, RIEDEL P, et al. Laser oscillation in yellow and blue spectral range in Dy3+∶ZBLAN[J]. Electronics Letters, 2000, 36(16): 1386. [113] QU B, XU B, LUO S Y, et al. InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+∶LiYF4 crystal[J]. IEEE Photonics Technology Letters, 2015, 27(4): 333-335. [114] RICHTER A, HEUMANN E, HUBER G, et al. Power scaling of semiconductor laser pumped Praseodymium-lasers[J]. Optics Express, 2007, 15(8): 5172-5178. [115] LI S M, ZHANG L H, ZHANG P X, et al. Spectroscopic characterizations of Dy∶LaF3 crystal[J]. Infrared Physics & Technology, 2017, 87: 65-71. [116] YANG Y L, ZHANG L H, LI S M, et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal[J]. Journal of Luminescence, 2019, 215: 116707. [117] ZHANG Y X, YANG Y L, ZHANG L H, et al. Watt-level continuous-wave and passively Q-switched red lasers pumped by a single blue laser diode[J]. Chinese Optics Letters, 2019, 17(7): 071402. |
| [1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
| [2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [3] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
| [4] | DOU Renqin, LIU Yao, LUO Jianqiao, WANG Xiaofei, LIU Wenpeng, ZHANG Qingli. Spectral Analysis and Thermal Properties of Nd∶GdYAG Laser Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1504-1511. |
| [5] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
| [6] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
| [7] | DONG Yujuan, LIU Zhaojiang, ZHU Qirui. Preparation of Yellow-Emitting Pure Zn3V2O8 Phosphors and Its Optical Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1416-1421. |
| [8] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
| [9] | WU Shiting, YU Chunyan, FANG Jiaqing, XU Yang, ZHAI Guangmei. Intermediate Shell Structure Regulation and Optical Properties of ZnSe Based Blue Quantum Dots [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1160-1169. |
| [10] | YU Hang, ZHAO Qi, QI Xiaofang, MA Wencheng, XU Yongkuan, HU Zhanggui. Effect of Internal Radiation Heat Transfer on the Thermal Stress in Growing Ti∶Sapphire Crystal by Heat Exchanger Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1212-1221. |
| [11] | LI Lihua, ZHOU Longjie, LIU Shuo, WANG Hang, HUANG Jinliang. First-Principles Study on Electronic Structure and Optical Properties of SnO2 (110)/FAPbBrI2 (001) Interface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1239-1248. |
| [12] | HE Zhihao, GOU Jie, WANG Yunjie, QI Yajie, DING Jiafu, ZHANG Bo, ZHAO Xingsheng, PEI Yizhen, HOU Shuyu, SU Xin. First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1249-1256. |
| [13] | ZHANG Bo, WANG Yunjie, QI Yajie, DING Jiafu, HE Zhihao, SU Xin. First Principles Study on the Structure-Property Relationship of Alkali Metal Molybdates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 999-1007. |
| [14] | WANG Tao, ZHANG Yuhao, YIN Hairong. Structural Design and Photocatalytic Antimicrobial Properties of NaTaO3 Based on Density Functional Theory [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1051-1060. |
| [15] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS