JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (9-10): 1643-1658.
Special Issue: 钙钛矿单晶与薄膜材料
• Reviews • Previous Articles Next Articles
LIU Yangbin, LI Qian, XIAO Ruoyu, XU Zhuo, LI Fei
Received:2022-08-30
Online:2022-10-15
Published:2022-11-02
CLC Number:
LIU Yangbin, LI Qian, XIAO Ruoyu, XU Zhuo, LI Fei. Research Progress on the Growth and Property Optimization of Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1643-1658.
| [1] ZHANG Z, XU J L, YANG L L, et al. Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2018, 283: 273-281. [2] 莫喜平.第三讲 让声纳系统耳目一新:新型水声换能器与换能器新技术[J].物理,2006,35(5):414-419. MO X P. Innovations for sonar: new technology and designs for underwater acoustic transducers[J]. Physics, 2006, 35(5): 414-419(in Chinese). [3] PENG C, WU H Y, KIM S, et al. Recent advances in transducers for intravascular ultrasound (IVUS) imaging[J]. Sensors, 2021, 21(10): 3540. [4] HUANG Y, ZHANG S J, WANG P H, et al. Hi-fi stake piezo single crystal actuator[J]. Actuators, 2018, 7(3): 60. [5] BAASANDORJ L, CHEN Z B. Recent developments on relaxor-PbTiO3 ferroelectric crystals[J]. Crystals, 2021, 12(1): 56. [6] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review[J]. Progress in Materials Science, 2015, 68: 1-66. [7] SONG K X, LI Q, GUO H S, et al. Composition and electrical properties characterization of a 5” diameter PIN-PMN-PT single crystal by the modified Bridgman method[J]. Journal of Alloys and Compounds, 2021, 851: 156145. [8] FAN H Q, ZHAO L L, TANG B, et al. Growth and characterization of PMNT relaxor-based ferroelectric single crystals by flux method[J]. Materials Science and Engineering: B, 2003, 99(1/2/3): 183-186. [9] MATSUSHITATA M, ECHIZENYA K. Continuous feeding growth of ternary PIN-PMN-PT single crystals[C]. IEEE, 2014. [10] ECHIZENYA K, MATSUSHITA M. Continuous feed growth and characterization of PMN-PT single crystals[C]//2011 IEEE International Ultrasonics Symposium. Orlando, FL, USA. IEEE,: 1813-1816. [11] ECHIZENYA K, NAKAMURA K, MIZUNO K. PMN-PT and PIN-PMN-PT single crystals grown by continuous-feeding Bridgman method[J]. Journal of Crystal Growth, 2020, 531: 125364. [12] KANG S J L, PARK J H, KO S Y, et al. Solid-state conversion of single crystals: the principle and the state-of-the-art[J]. Journal of the American Ceramic Society, 2015, 98(2): 347-360. [13] 江民红,倪双阳,姚小玉,等.固相晶体生长技术的发展:从籽晶诱导到无籽晶生长[J].人工晶体学报,2020,49(6):965-978. JIANG M H, NI S Y, YAO X Y, et al. Development of solid-state crystal growth technology: from seed-induced to seed-free growth[J]. Journal of Synthetic Crystals, 2020, 49(6): 965-978(in Chinese). [14] KIM Y M, LEE S H, LEE H Y, et al. Measurement of all the material properties of PMN-PT single crystals grown by the solid-state-crystal-growth (SSCG) method[C]//IEEE Symposium on Ultrasonics. Honolulu, HI, USA. IEEE,: 1987-1990. [15] ZHANG S J, LEE S M, KIM D H, et al. Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 single crystals for high power broad bandwidth transducers[J]. Applied Physics Letters, 2008, 93(12): 122908. [16] Ceracomp Company Ltd.Ceracomp-PMNT PSC Brochure [EB/OL].[2015-09-21]. http://www.ceracomp.com/. [17] ZAWILSKI K T, DEMATTEI R C, FEIGELSON R S. Zone leveling of lead magnesium niobate-lead titanate crystals using RF heating[J]. Journal of Crystal Growth, 2005, 277(1/2/3/4): 393-400. [18] LUO J, ZHANG S J, SHROUT T R, et al. Advances in manufacturing relaxor piezoelectric single crystals[C]//2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. Nara, Japan. IEEE: 557-560. [19] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. [20] LEE H Y, ZHANG S J, SHROUT T R. Development of high TC PMN-PZT piezoelectric single crystals by the solid-state crystal growth (SSCG) technique[C]//2008 17th IEEE International Symposium on the Applications of Ferroelectrics. Santa Re, NM, USA. IEEE,: 1-2. [21] CHEN H B, LIANG Z, LUO L H, et al. Bridgman growth, crystallographic characterization and electrical properties of relaxor-based ferroelectric single crystal PIMNT[J]. Journal of Alloys and Compounds, 2012, 518: 63-67. [22] CHEN J W, LI X B, ZHAO X Y, et al. Compositional segregation, structural transformation and property-temperature relationship of high-Curie temperature Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9316-9328. [23] SRIMATHY B, KUMAR J. Effect of donor dopants on the properties of flux grown PZN-PT single crystals[J].Applied Physics A, 2021, 127(6): 1-7. [24] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354. [25] OH H T, JOO H J, KIM M C, et al. Effect of Mn on dielectric and piezoelectric properties of 71PMN-29PT[71Pb(Mg1/3Nb2/3)O3-29PbTiO3]single crystals and polycrystalline ceramics[J]. Journal of the Korean Ceramic Society, 2018, 55(2): 166-173. [26] XIONG J J, WANG Z J, YANG X M, et al. Improvement of temperature-stability and piezoelectric performance of Pb(In0.5Nb0.5)O3-PbTiO3 crystals via Nd doping[J]. Ceramics International, 2021, 47(14): 19575-19581. [27] LI C C, XU B, LIN D B, et al. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics[J]. Physical Review B, 2020, 101(14): 140102. [28] LI Q, LIU Y B, LIU J F, et al. Enhanced piezoelectric properties and improved property uniformity in Nd-doped PMN-PT relaxor ferroelectric single crystals[J]. Advanced Functional Materials, 2022, 32(25): 2201719. [29] XIONG J J, WANG Y Q, YANG X M, et al. Significant performance enhancement of Nd-doped Pb(In0.5Nb0.5)O3-PbTiO3 ferroelectric crystals[J]. CrystEngComm, 2022, 24(24): 4341-4345. [30] 李 飞,张树君,李振荣,等.弛豫铁电单晶的研究进展—压电效应的起源研究[J].物理学进展,2012,32(4):178-198. LI F, ZHANG S J, LI Z R, et al. Recent development on relaxor-PbTiO3 single crystals: the origin of high piezoelectric response[J]. Progress in Physics, 2012, 32(4): 178-198(in Chinese). [31] WADA S, YAKO K, KAKEMOTO H, et al. Enhanced piezoelectric property of BaTiO3 single crystals with the different domain sizes[J]. Key Engineering Materials, 2004, 269: 19-22. [32] WADA S, YAKO K, KAKEMOTO H, et al. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes[J]. Journal of Applied Physics, 2005, 98(1): 014109. [33] BELL A J, SHEPLEY P M, LI Y. Domain wall contributions to piezoelectricity in relaxor-lead titanate single crystals[J]. Acta Materialia, 2020, 195: 292-303. [34] RAO W F, WANG Y U. Bridging domain mechanism for phase coexistence in morphotropic phase boundary ferroelectrics[J]. Applied Physics Letters, 2007, 90(18): 182906. [35] SLUKA T, TAGANTSEV A K, DAMJANOVIC D, et al. Enhanced electromechanical response of ferroelectrics due to charged domain walls[J]. Nature Communications, 2012, 3: 748. [36] ONDREJKOVIC P, MARTON P, GUENNOU M, et al. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls[J]. Physical Review B, 2013, 88(2): 024114. [37] WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33(51): e2105071. [38] LI F, WANG L H, JIN L, et al. Achieving single domain relaxor-PT crystals by high temperature poling[J]. CrystEngComm, 2014, 16(14): 2892-2897. [39] XIONG J J, WANG Z J, YANG X M, et al. Performance enhancement of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric single crystals using pulse poling[J]. Scripta Materialia, 2022, 215: 114694. [40] YAMASHITA Y. Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method: USA, 20150372219[Z]. 2015. [41] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354. [42] QIU C R, XU Z, AN Z Y, et al. In-situ domain structure characterization of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals under alternating current electric field poling[J]. Acta Materialia, 2021, 210: 116853. [43] WAN H T, LUO C T, LIU C, et al. Alternating current poling on sliver-mode rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Acta Materialia, 2021, 208: 116759. [44] XU J L, DENG H, ZENG Z, et al. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer[J]. Applied Physics Letters, 2018, 112(18): 182901. [45] CHANG W Y, CHUNG C C, LUO C T, et al. Dielectric and piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal poled using alternating current[J]. Materials Research Letters, 2018, 6(10): 537-544. [46] WAN H T, LUO C T, CHANG W Y, et al. Effect of poling temperature on piezoelectric and dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals under alternating current poling[J]. Applied Physics Letters, 2019, 114(17): 172901. [47] LUO C T, WAN H T, CHANG W Y, et al. Effect of low-frequency alternating current poling on 5-mm-thick 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals [J]. Applied Physics Letters, 2019, 115(26): 269901. [48] WAN H T, LUO C T, CHUNG C C, et al. Enhanced dielectric and piezoelectric properties of Manganese-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling[J]. Applied Physics Letters, 2021, 118(10): 102904. [49] QIU C R, LIU J F, LI F, et al. Thickness dependence of dielectric and piezoelectric properties for alternating current electric-field-poled relaxor-PbTiO3 crystals[J]. Journal of Applied Physics, 2019, 125(1): 014102. [50] MA M, XIA S, SONG K X, et al. Enhanced dielectric and piezoelectric properties in the[001]-poled 0.25Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystal near morphotropic phase boundary by alternating current treatment[J]. Journal of Applied Physics, 2020, 127(6): 064106. [51] LIU J F, QIU C R, QIAO L, et al. Impact of alternating current electric field poling on piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystals[J]. Journal of Applied Physics, 2020, 128(9): 94104. [52] ZHAO K, ZHENG M P, YAN X D, et al. Effect of direct current and alternating current poling on the piezoelectric properties of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(23): 27815-27822. [53] EIMERL D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs[J]. Ferroelectrics, 1987, 72(1): 95-139. [54] WEN X H, QI Y, MENG X Y. DFT study on the clamped linear electro-optic effect in KH2PO4[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics. Dalian, China. IEEE: V4-53. [55] MASHKOVICH E A, SHUGUROV A I, OZAWA S, et al. Noncollinear electro-optic sampling of terahertz waves in a thick GaAs crystal[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 732-736. [56] ZENG R, ZHUANG C J, NIU B, et al. Measurement of transient electric fields in air gap discharge with an integrated electro-optic sensor[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 955-960. [57] 罗豪甦,焦 杰,陈 瑞,等.弛豫铁电单晶的多功能特性及其器件应用[J].人工晶体学报,2021,50(5):783-802. LUO H S, JIAO J, CHEN R, et al. Multifunctional properties and device applications of the relaxor ferroelectric single crystals[J]. Journal of Synthetic Crystals, 2021, 50(5): 783-802(in Chinese). [58] 王继扬,黄林勇,覃方丽,等.电光晶体研究进展及其对称性究[J].物理学进展,2012,32(1):33-56. WANG J Y, HUANG L Y, QIN F L, et al. Progress of the electro-optic crystal research and the symmetry dependence of electro-optic effect[J]. Progress in Physics, 2012, 32(1): 33-56(in Chinese). [59] SMOLENSKII G A, BEREZHNOI A A, KRAINIK N N, et al. Electro-optical properties of perovskite-type ferroelectric crystals of complex composition[J]. Bulletin of the Academy of Sciences of the USSR. 1969, 33(2): 258-260. [60] SMOLENSKII G A, BEREZHNOI A A, PISAREV R V, et al. Anomalous dispersion of the electro-optical effect in ferroelectric PbNi1/2Nb2/3O3[J]. Fizika Tverdogo Tela. 1969, 11(5): 1120-1123. [61] LU Y, CHENG Z Y, PARK S E, et al. Linear electro-optic effect of 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 single crystal[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 1): 141-145. [62] LU Y, CHENG Z Y, BARAD Y, et al. Photoelastic effects in tetragonal Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals near the morphotropic phase boundary[J]. Journal of Applied Physics, 2001, 89(9): 5075-5078. [63] BARAD Y, LU Y, CHENG Z Y, et al. Composition, temperature, and crystal orientation dependence of the linear electro-optic properties of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals[J]. Applied Physics Letters, 2000, 77(9): 1247-1249. [64] WAN X M, CHAN H L W, CHOY C L, et al. Optical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry[J]. Journal of Applied Physics, 2004, 96(3): 1387-1391. [65] WAN X M, LUO H S, WANG J, et al. Investigation on optical transmission spectra of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Solid State Communications, 2004, 129(6): 401-405. [66] HE C J, ZHOU Z X, LIU D J, et al. Photorefractive effect in relaxor ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal[J]. Applied Physics Letters, 2006, 89(26): 261111. [67] HE C J, TANG Y X, ZHAO X Y, et al. Optical dispersion properties of tetragonal relaxor ferroelectric single crystals 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3[J]. Optical Materials, 2007, 29(8): 1055-1057. [68] WU F M, YANG B, SUN E W, et al. Optical properties and dispersions of rhombohedral 0.24Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single domain single crystal[J]. Optical Materials, 2013, 36(2): 342-345. [69] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377. |
| [1] | CHEN Hongming, FAN Shengqi, SONG Qi, JIANG Ling, CHEN Yongjun, LI Jianbao, ZHANG Xueyan. Preparation of Ni-Doped Mo2C/C Bifunctional Catalysts and Their Performance in Electrolytic Water Splitting [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 158-164. |
| [2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [3] | PANG Guowang, ZHANG Pan, YIN Wei, YANG Yahong, MA Yabin, YANG Feiyu, MA Junliang, WANG Ping, QIN Yanjun, LI Ping. Preparation and Energy Storage Performance of KNN-CZ Relaxation Ferroelectric Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 139-145. |
| [4] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [5] | LIU Yunyun, HUANG Chuanxin, WANG Meng, WANG Yan. Synthesis and Luminescence Properties of Dy3+/Eu3+ Co-Doped CaLaGa3O7 Color Tunable Phosphors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1560-1567. |
| [6] | BAI Qiongyu, WANG Chunhao. Performance of In3+ Doped Zn3Ga2Ge2O10∶Cr3+ Far-Red Light Emitting Materials for Plant Light Supplement [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1568-1575. |
| [7] | NIU Lili, WANG Pei, LIU Yanbin, ZHAO Huijuan. Recent Advances in Biomass-Derived Carbon Materials for Supercapacitors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1302-1312. |
| [8] | ZHONG Qiongli, WANG Xu, MA Kui, YANG Fashun. Effect of Al Doping on the Optical Properties of β-Ga2O3 Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1352-1360. |
| [9] | CHEN Xinxin, HAN Jiali, PAN Jianguo. Growth and Luminescence Properties of Large Size and High Quality CsCu2I3 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1106-1111. |
| [10] | HE Zhihao, GOU Jie, WANG Yunjie, QI Yajie, DING Jiafu, ZHANG Bo, ZHAO Xingsheng, PEI Yizhen, HOU Shuyu, SU Xin. First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1249-1256. |
| [11] | FAN Hao, CHEN Yongjun, LI Jianbao, CHEN Shuaifeng, CHEN Qing. Preparation of B and N Co-Doped Carbon Micro-Nanostructures Using Waste Coconut Wood and Their Electromagnetic Wave Absorption Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1269-1279. |
| [12] | LI Yuqi, XU Ying, LIANG Shiming. Research Progress of Indium Oxide-Based Gas Sensitive Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 930-946. |
| [13] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
| [14] | HU Zhengkai, YANG Weibin, XIONG Feibing, GUO Yisheng, BAI Xin, LI Mingming. Preparation and Luminescence Properties of Sm3+ Doped Na5Y1-x(MoO4)4-y(WO4)y Phosphors with High Thermal Stability [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1016-1025. |
| [15] | QI Jun, LI Jiale, HU Shan, YU Xiaofeng, LIAO Weixing, HUANG Shiwen, XU Xiuquan. Preparation of Nano Ag Decorated Sulfur Doped g-C3N4 and Its Photocatalytic Antibacterial Performance [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1034-1041. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS