JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (9-10): 1703-1721.
• Reviews • Previous Articles Next Articles
ZHAO Qinghua1,2, ZHENG Dan1, CHEN Peng1, WANG Tao1,2, JIE Wanqi1
Received:2022-07-27
Online:2022-10-15
Published:2022-11-02
CLC Number:
ZHAO Qinghua, ZHENG Dan, CHEN Peng, WANG Tao, JIE Wanqi. Research Progress on Indium Selenide Crystals and Optoelectronic Devices[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1703-1721.
| [1] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. [2] 李兴鳌,王博琳,刘忠儒.石墨烯的制备、表征与特性研究进展[J].材料导报,2012,26(1):61-65. LI X A, WANG B L, LIU Z R. Research progress in preparation, characterization and properties of graphene[J]. Materials Review, 2012, 26(1): 61-65(in Chinese). [3] CHHOWALLA M, JENA D, ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 2016, 1: 16052. [4] 徐春燕,南海燕,肖少庆,等.基于二维半导体材料光电器件的研究进展[J].电子与封装,2021,21(3):71-85. XU C Y, NAN H Y, XIAO S Q, et al. Research progress of photoelectric devices based on 2D semiconductor materials[J]. Electronics & Packaging, 2021, 21(3): 71-85(in Chinese). [5] DAI M J, GAO C F, NIE Q F, et al. Properties, synthesis, and device applications of 2D layered InSe[J]. Advanced Materials Technologies, 2022: 2200321. [6] MANCHESTER U O. New ultra-thin semiconductor could extend life of Moore's law[J]. Phys Org, 2016. [7] SCHUBERT K, DÖRRE E, GÜNZEL E. Kristallchemische ergebnisse an phasen aus B-elementen[J]. Naturwissenschaften, 1954, 41(19): 448. [8] SUGAIKE S. Synthesis, crystal lattices and some electrical properties of indium tellurides and selenides[J]. Mineralogical Journal, 1957, 2(2): 63-77. [9] SEMILETOV S. Electronografic determination of the InSe structure[J]. Kristallografiya, 1958, 3 (3): 288-292. [10] RIGOULT J, RIMSKY A, KUHN A. Refinement of the 3R γ-indium monoselenide structure type[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1980, 36(4): 916-918. [11] IKARI T, SHIGETOMI S, HASHIMOTO K. Crystal structure and Raman spectra of InSe[J]. Physica Status Solidi (b), 1982, 111(2): 477-481. [12] HAN G, CHEN Z G, DRENNAN J, et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances[J]. Small, 2014, 10(14): 2747-2765. [13] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272. [14] GÜRBULAK B, ŞATA M, DOGAN S, et al. Structural characterizations and optical properties of InSe and InSe∶Ag semiconductors grown by Bridgman/Stockbarger technique[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64: 106-111. [15] CHEVY A. Improvement of growth parameters for Bridgman-grown InSe crystals[J]. Journal of Crystal Growth, 1984, 67(1): 119-124. [16] DE BLASI C, MICOCCI G, MONGELLI S, et al. Large InSe single crystals grown from stoichiometric and non-stoichiometric melts[J]. Journal of Crystal Growth, 1982, 57(3): 482-486. [17] ISHII T. High quality single crystal growth of layered InSe Semiconductor by Bridgman technique[J]. Journal of Crystal Growth, 1988, 89(4): 459-462. [18] CHEVY A, KUHN A, MARTIN M S. Large InSe monocrystals grown from a non-stoichiometric melt[J]. Journal of Crystal Growth, 1977, 38(1): 118-122. [19] TRIBOULET R, LEVY-CLEMENT C, THEYS B, et al. Growth of InSe single crystals by the travelling heater method[J]. Journal of Crystal Growth, 1986, 79(1/2/3): 984-989. [20] SUN M, WANG W, ZHAO Q H, et al. ε-InSe single crystals grown by a horizontal gradient freeze method[J]. CrystEngComm, 2020, 22: 7864-7869. [21] SREEDHAR A K, SHARMA B L, PUROHIT R K. Preparation and electrical properties of InSe[J]. Radiation Effects, 1970, 4(1): 121-122. [22] MUDD G W, SVATEK S A, REN T H, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement[J]. Advanced Materials, 2013, 25(40): 5714-5718. [23] PETRONI E, LAGO E, BELLANI S, et al. Liquid-phase exfoliated indium-selenide flakes and their application in hydrogen evolution reaction[J]. Small, 2018, 14(26): e1800749. [24] LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered inse nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. [25] YANG Z B, JIE W J, MAK C H, et al. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse[J]. ACS Nano, 2017, 11(4): 4225-4236. [26] ZHOU J D, SHI J, ZENG Q S, et al. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation[J]. 2D Materials, 2018, 5(2): 025019. [27] WASALA M, SIRIKUMARA H I, RAJ SAPKOTA Y, et al. Recent advances in investigations of the electronic and optoelectronic properties of group III, IV, and V selenide based binary layered compounds[J]. Journal of Materials Chemistry C, 2017, 5(43): 11214-11225. [28] ZHAO Q H, PUEBLA S, ZHANG W L, et al. Thickness identification of thin InSe by optical microscopy methods[J]. Advanced Photonics Research, 2020, 1(2): 2000025. [29] FENG W, ZHENG W, CAO W W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface[J]. Advanced Materials, 2014, 26(38): 6587-6593. [30] MUDD G W, MOLAS M R, CHEN X, et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals[J]. Scientific Reports, 2016, 6: 39619. [31] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. [32] TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319. [33] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475. [34] MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. [35] RADISAVLJEVIC B, KIS A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820. [36] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2 transistors Be? [J]. Nano Letters, 2011, 11(9): 3768-3773. [37] ZHANG Y, CHANG T R, ZHOU B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115. [38] LI S L, TSUKAGOSHI K, ORGIU E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J]. Chemical Society Reviews, 2016, 45(1): 118-151. [39] LARENTIS S, FALLAHAZAD B, TUTUC E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers[J]. Applied Physics Letters, 2012, 101(22): 223104. [40] GUSAKOVA J, WANG X L, SHIAU L L, et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method)[J]. Physica Status Solidi (a), 2017, 214(12): 1700218. [41] FANG H, CHUANG S, CHANG T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Letters, 2012, 12(7): 3788-3792. [42] CHUANG H J, CHAMLAGAIN B, KOEHLER M, et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors[J]. Nano Letters, 2016, 16(3): 1896-1902. [43] ZHAO W J, GHORANNEVIS Z, CHU L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J]. ACS Nano, 2013, 7(1): 791-797. [44] BAUGHER B W H, CHURCHILL H O H, YANG Y F, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262-267. [45] JIN Z H, LI X D, MULLEN J T, et al. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides[J]. Physical Review B, 2014, 90(4): 045422. [46] TONGAY S, FAN W, KANG J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Letters, 2014, 14(6): 3185-3190. [47] ELÍAS A L, PEREA-LÓPEZ N, CASTRO-BELTRÁN A, et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235-5242. [48] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al. Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181. [49] BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12(3): 223-227. [50] LI M J, LIN C Y, YANG S H, et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping[J]. Advanced Materials, 2018, 30(44): e1803690. [51] CHANG H C, TU C L, LIN K I, et al. Synthesis of large-area InSe monolayers by chemical vapor deposition[J]. Small, 2018, 14(39): 1802351. [52] ZHAO Q H, WANG W, CARRASCOSO-PLANA F, et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors[J]. Materials Horizons, 2020, 7(1): 252-262. [53] FENG W, ZHENG W, CHEN X S, et al. Gate modulation of threshold voltage instability in multilayer InSe field effect transistors[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26691-26695. [54] SUCHARITAKUL S, GOBLE N J, KUMAR U R, et al. Intrinsic electron mobility exceeding 103 cm2/(V·s) in multilayer InSe FETs[J]. Nano Letters, 2015, 15(6): 3815-3819. [55] WELLS S A, HENNING A, GISH J T, et al. Suppressing ambient degradation of exfoliated InSe nanosheet devices via seeded atomic layer deposition encapsulation[J]. Nano Letters, 2018, 18(12): 7876-7882. [56] FENG W, WU J B, LI X L, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. Journal of Materials Chemistry C, 2015, 3(27): 7022-7028. [57] ZENG J W, LIANG S J, GAO A Y, et al. Gate-tunable weak antilocalization in a few-layer InSe[J]. Physical Review B, 2018, 98(12): 125414. [58] JIANG J F, LI J X, LI Y T, et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing[J].Npj 2D Materials and Applications, 2019, 3(1): 1-8. [59] FENG W, QIN F L, YU M M, et al. Synthesis of superlattice InSe nanosheets with enhanced electronic and optoelectronic performance[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18511-18516. [60] WANG Y H, GAO J W, WEI B, et al. Reduction of the ambient effect in multilayer InSe transistors and a strategy toward stable 2D-based optoelectronic applications[J]. Nanoscale, 2020, 12(35): 18356-18362. [61] BERGERON H, GUINEY L M, BECK M E, et al. Large-area optoelectronic-grade InSe thin films via controlled phase evolution[J]. Applied Physics Reviews, 2020, 7(4): 041402. [62] HAO Q Y, LIU J D, WANG G, et al. Surface-modified ultrathin InSe nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics[J]. ACS Nano, 2020, 14(9): 11373-11382. [63] LIANGMEI W, JINAN S, ZHANG Z, et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics[J]. Nano Research, 2020(4): 1127-1132. [64] ZHANG S C, QIU Y F, YANG H H, et al. The role of hybrid dielectric interfaces in improving the performance of multilayer InSe transistors[J]. Journal of Materials Chemistry C, 2020, 8(20): 6701-6709. [65] CHENG C Y, PAI W L, CHEN Y H, et al. Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors[J]. Nano Letters, 2022, 22(6): 2270-2276. [66] FENG W, ZHOU X, TIAN W Q, et al. Performance improvement of multilayer InSe transistors with optimized metal contacts[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(5): 3653-3658. [67] YANG H W, HSIEH H F, CHEN R S, et al. Ultraefficient ultraviolet and visible light sensing and ohmic contacts in high-mobility InSe nanoflake photodetectors fabricated by the focused ion beam technique[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5740-5749. [68] ARORA H, JUNG Y, VENANZI T, et al. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43480-43487. [69] HO P H, CHANG Y R, CHU Y C, et al. High-mobility InSe transistors: the role of surface oxides[J]. ACS Nano, 2017, 11(7): 7362-7370. [70] OSMAN M, HUANG Y M, FENG W, et al. Modulation of opto-electronic properties of InSe thin layers via phase transformation[J]. RSC Advances, 2016, 6(74): 70452-70459. [71] GUO Z, CAO R, WANG H, et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe[J]. National Science Review, 2022, 9(5): nwab098. [72] WANG Y, WANG H L, GALI S M, et al. Molecular doping of 2D indium selenide for ultrahigh performance and low-power consumption broadband photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103353. [73] HUANG Y T, CHEN Y H, HO Y J, et al. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33450-33456. [74] CHEN Y H, CHENG C Y, CHEN S Y, et al. Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors[J]. Npj 2D Materials and Applications, 2019, 3: 49. [75] HU S Q, LUO X G, XU J P, et al. Reconfigurable InSe electronics with van der waals integration[J]. Advanced Electronic Materials, 2022, 8(5): 2101176. [76] KANG J, WELLS S A, SANGWAN V K, et al. Solution-based processing of optoelectronically active indium selenide[J]. Advanced Materials, 2018, 30(38): e1802990. [77] CHNG S S, ZHU M M, WU J, et al. Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors[J]. Journal of Materials Chemistry C, 2020, 8(13): 4421-4431. [78] CHANG Y R, HO P H, WEN C Y, et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector[J]. ACS Photonics, 2017, 4(11): 2930-2936. [79] TSAI T H, YANG F S, HO P H, et al. High-mobility InSe transistors: the nature of charge transport[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35969-35976. [80] SINGH P, BAEK S, YOO H H, et al. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications[J]. ACS Nano, 2022: 2022 Mar 2. [81] WANG Y M, ZHANG J W, LIANG G D, et al. Schottky-barrier thin-film transistors based on HfO2-capped InSe[J]. Applied Physics Letters, 2019, 115(3): 033502. [82] JIANG J F, MENG F Q, CHENG Q L, et al. Low lattice mismatch InSe-Se vertical van der waals heterostructure for high-performance transistors via strong Fermi-level depinning[J]. Small Methods, 2020, 4(8): 2070032. [83] WANG F L, JIANG J F, LIU Q L, et al. Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect[J]. Nano Energy, 2020, 70: 104457. [84] LIU L, WU L M, WANG A W, et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity[J]. Nano Letters, 2020, 20(9): 6666-6673. [85] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272. [86] TAMALAMPUDI S R, LU Y Y, KUMAR U R, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response[J]. Nano Letters, 2014, 14(5): 2800-2806. [87] LUO W G, CAO Y F, HU P G, et al. Gate tuning of high-performance InSe-based photodetectors using graphene electrodes[J]. Advanced Optical Materials, 2015, 3(10): 1418-1423. [88] LEI S D, WEN F F, GE L H, et al. An atomically layered InSe avalanche photodetector[J]. Nano Letters, 2015, 15(5): 3048-3055. [89] ZHANG Z Y, CHENG B, LIM J, et al. Approaching intrinsic threshold breakdown voltage and ultra-high gain in graphite/InSe Schottky photodetector[J]. Advanced Materials, 2022: 2206196. [90] MUDD G W, SVATEK S A, HAGUE L, et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures[J]. Advanced Materials, 2015, 27(25): 3760-3766. [91] CHEN Z S, BISCARAS J, SHUKLA A. A high performance graphene/few-layer InSe photo-detector[J]. Nanoscale, 2015, 7(14): 5981-5986. [92] DAI M J, CHEN H Y, FENG R, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction[J]. ACS Nano, 2018, 12(8): 8739-8747. [93] ULAGANATHAN R K, YADAV K, SANKAR R, et al. Hybrid InSe nanosheets and MoS2 quantum dots for high-performance broadband photodetectors and photovoltaic cells[J]. Advanced Materials Interfaces, 2019, 6(2): 1801336. [94] CURRELI N, SERRI M, SPIRITO D, et al. Liquid phase exfoliated indium selenide based highly sensitive photodetectors[J]. Advanced Functional Materials, 2020, 30 (13): 1908427. [95] HU S Q, ZHANG Q, LUO X G, et al. Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity[J]. Nanoscale, 2020, 12(6): 4094-4100. [96] WU C Y, CAO K J, LE Y X, et al. Spectral engineering of InSe nanobelts for full-color imaging by tailoring the thickness[J]. The Journal of Physical Chemistry Letters, 2022, 13(12): 2668-2673. [97] JANG H, SEOK Y, CHOI Y, et al. High-performance near-infrared photodetectors based on surface-doped InSe[J]. Advanced Functional Materials, 2021, 31(3): 2006788. [98] DAI M J, CHEN H Y, WANG F K, et al. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors[J]. ACS Nano, 2019, 13(6): 7291-7299. [99] QIU H, XU T, WANG Z L, et al. Hopping transport through defect-induced localized states in molybdenum disulphide[J]. Nature Communications, 2013, 4: 2642. [100] YU Z H, PAN Y M, SHEN Y T, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J]. Nature Communications, 2014, 5: 5290. [101] XIAO K J, CARVALHO A, CASTRO NETO A H. Defects and oxidation resilience in InSe[J]. Physical Review B, 2017, 96(5): 054112. [102] PHAM V T, FANG T H. Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers[J]. Scientific Reports, 2020, 10: 15082. [103] YANG X, LIU X, QU L, et al. Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping[J]. ACS Nano, 2022, 16(5): 8440-8448. |
| [1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
| [2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [3] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
| [4] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
| [5] | LI Yang, CUI Nan, FU Nianqing, CHEN Youchen, PAN Shusheng, LIN Shenghuang. Applications of Flexible Transparent 2D Optoelectronic Devices in Intelligent Information Fields [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1087-1105. |
| [6] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
| [7] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
| [8] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
| [9] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
| [10] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
| [11] | CAO Cong, LIU Jianggao, FAN Yexia, LI Zhenxing, ZHOU Zhenqi, MA Qisi, NIU Jiajia. Relationship Between Temperature Gradient and Interfacial Shape Stability of CZT Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 641-648. |
| [12] | XU Zhonghui, XU Shengyuan, LIU Chuanchuan, LIU Guogang. First-Principles Study on Photogalvanic Effect and Strain Engineering of Monolayer SnS [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 676-683. |
| [13] | XIE Hanrong, YANG Tiefeng, WEI Yuming, GUAN Heyuan, LU Huihui. Recent Research Progress of Thin film Lithium Niobate Photodetector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 410-425. |
| [14] | WANG Kunyuan, LIANG Xiaoyan, MIN Jiahua, ZHANG Jijun. Effect of In-Situ Heating Treatment on the Quality and Properties of CdZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2079-2084. |
| [15] | LI Dongmei, ZHOU Jun, WU Feifan, LYU Jiabo, XIAO Li, GONG Hengxiang. Effect of Electrostatic Field on the Preparation of TiO2 Thin Films by Ultrasonic Atomised Pyrolytic Spraying [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2173-2180. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS