JOURNAL OF SYNTHETIC CRYSTALS ›› 2023, Vol. 52 ›› Issue (10): 1733-1744.
• Review • Next Articles
LIU Junjie1,2, GUAN Chunlong1, YI Jian2, SONG Hui2, JIANG Nan2, KAZUHITO Nishimura2
Received:
2023-05-09
Published:
2023-10-18
CLC Number:
LIU Junjie, GUAN Chunlong, YI Jian, SONG Hui, JIANG Nan, KAZUHITO Nishimura. Research Status of Preparation and Processing of Large-Size Single Crystal Diamond Substrates for Semiconductors[J]. Journal of Synthetic Crystals, 2023, 52(10): 1733-1744.
[1] 段 鹏. MPCVD法生长单晶金刚石研究[D]. 济南: 山东大学, 2020. DUAN P. Study on growth of single crystal diamond by MPCVD method[D].Jinan: Shandong University, 2020 (in Chinese). [2] 熊 刚. MPCVD法外延生长单晶金刚石的研究[D]. 武汉: 武汉工程大学, 2018. XIONG G. Study on epitaxial growth of single crystal diamond by MPCVD[D].Wuhan: Wuhan Institute of Technology, 2018 (in Chinese). [3] 李成明, 任飞桐, 邵思武, 等. 化学气相沉积(CVD)金刚石研究现状和发展趋势[J]. 人工晶体学报, 2022, 51(5): 759-780. LI C M, REN F T, SHAO S W, et al. Progress of chemical vapor deposition (CVD) diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 759-780 (in Chinese). [4] 吴 超. CVD同质外延单晶金刚石的研究[D]. 武汉: 武汉工程大学, 2016. WU C. Study on CVD homoepitaxial single crystal diamond[D].Wuhan: Wuhan Institute of Technology, 2016 (in Chinese). [5] 李一村, 郝晓斌, 代 兵, 等. MPCVD单晶金刚石高速率和高品质生长研究进展[J]. 人工晶体学报, 2020, 49(6): 979-989. LI Y C, HAO X B, DAI B, et al. Research progress on high rate and high quality growth of MPCVD single crystal diamond[J]. Journal of Synthetic Crystals, 2020, 49(6): 979-989 (in Chinese). [6] 王启亮, 吕宪义, 成绍恒, 等. 高速生长CVD金刚石单晶及应用[J]. 超硬材料工程, 2011, 23(2): 1-5. WANG Q L, LV X Y, CHENG S H, et al. High-rate growth of CVD single-crystal diamond and its application[J]. Superhard Material Engineering, 2011, 23(2): 1-5 (in Chinese). [7] 苏青峰. CVD金刚石薄膜材料与辐射探测器件的研究[D]. 上海: 上海大学, 2007. SU Q F. Study on CVD diamond film material and radiation detector[D].Shanghai: Shanghai University, 2007 (in Chinese). [8] 林晓棋, 满卫东, 张 玮, 等. MPCVD法合成大单晶金刚石的研究进展[J]. 硬质合金, 2013, 30(5): 288-296. LIN X Q, MAN W D, ZHANG W, et al. Research progress on synthesis of large-scale single crystal diamond by MPCVD[J]. Cemented Carbide, 2013, 30(5): 288-296 (in Chinese). [9] 牟草源, 李根壮, 谢文良, 等. 微波等离子体化学气相沉积法制备大尺寸单晶金刚石的研究进展[J]. 电子与封装, 2023, 23(1): 36-45. MU C Y, LI G Z, XIE W L, et al. Research progress in preparation of large-size single crystal diamond by microwave plasma chemical vapor deposition[J]. Electronics & Packaging, 2023, 23(1): 36-45 (in Chinese). [10] DERJAGUIN B V, FEDOSEEV D V, LUKYANOVICH V M, et al. Filamentary diamond crystals[J]. Journal of Crystal Growth, 1968, 2(6): 380-384. [11] KOIZUMI S, MURAKAMI T, INUZUKA T, et al. Epitaxial growth of diamond thin films on cubic boron nitride{111} surfaces by dc plasma chemical vapor deposition. Applied Physics Letters, 1990, 57(6): 563-565. [12] 王 杨. 硅衬底/铱/外延金刚石的第一性原理计算及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. WANG Y. First-principles calculation and experimental study of silicon substrate/iridium/epitaxial diamond[D].Harbin: Harbin Institute of Technology, 2021 (in Chinese). [13] YUGO S, KANAI T, KIMURA T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition[J]. Applied Physics Letters, 1991, 58(10): 1036-1038. [14] 李义锋, 佘建民, 苏静杰, 等. 偏压加强MPCVD法Ir(100)/MgO(100)基片上金刚石异质外延形核[J]. 人工晶体学报, 2015, 44(4): 896-901. LI Y F, SHE J M, SU J J, et al. Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method[J]. Journal of Synthetic Crystals, 2015, 44(4): 896-901 (in Chinese). [15] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium. Japanese Journal of Applied Physics, 1996, 35(8B): L1072 [16] CHEN C L, WANG Z C, KATO T, et al. Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride[J]. Nature Communications, 2015, 6: 6327. [17] DAVIS R F. Deposition and characterization of diamond, silicon carbide and gallium nitride thin films[J]. Journal of Crystal Growth, 1994, 137(1/2): 161-169. [18] LEE S T, PENG H Y, ZHOU X T, et al. A nucleation site and mechanism leading to epitaxial growth of diamond films[J]. Science, 2000, 287(5450): 104-106. [19] BRESCIA R, SCHRECK M, GSELL S, et al. Transmission electron microscopy study of the very early stages of diamond growth on iridium[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1045-1050. [20] 杨 柏. MPCVD法制备大尺寸单晶金刚石的仿真与实验研究[D]. 武汉: 华中科技大学, 2021. YANG B. Simulation and experimental study on preparation of large-size single crystal diamond by MPCVD method[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese). [21] LIU B J, SHU G Y, HAN J C, et al. Recent progress in hetero-epitaxial growth of the single-crystal diamond[J]. Scientia Sinica Technologica, 2020, 50(7): 831-848. [22] KASU M, TAKAYA R, MASAKI R, et al. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate. Diamond and Related Materials, 2022, 128: 109287. [23] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Simulation of microwave plasmas concentrated on the top surface of a diamond substrate with finite thickness[J]. Diamond and Related Materials, 2006, 15(9): 1383-1388. [24] LIANG Q, CHIN C Y, LAI J, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures[J]. Applied Physics Letters, 2009, 94(2): 024103. [25] GEIS M W, EFREMOW N N, SUSALKA R, et al. Mosaic diamond substrates approaching single-crystal quality using cube-shaped diamond seeds[J]. Diamond and Related Materials, 1994, 4(1): 76-82. [26] YAN C S, VOHRA Y K, MAO H K, et al. Very high growth rate chemical vapor deposition of single-crystal diamond[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12523-12525. [27] MUCHNIKOV A B, RADISHEV D B, VIKHAREV A L, et al. Characterization of interfaces in mosaic CVD diamond crystal[J]. Journal of Crystal Growth, 2016, 442: 62-67. [28] FINDELING-DUFOUR C, GICQUEL A. Study for fabricating large area diamond single-crystal layers[J]. Thin Solid Films, 1997, 308/309: 178-185. [29] SHU G Y, DAI B, RALCHENKO V G, et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy[J]. Journal of Crystal Growth, 2017, 463: 19-26. [30] WANG X W, DUAN P, CAO Z Z, et al. Surface morphology of the interface junction of CVD mosaic single-crystal diamond[J]. Materials, 2019, 13(1): 91. [31] 胡付生, 杨明阳, 袁其龙, 等. 金刚石表面沟槽的横向拼接生长研究[J]. 硬质合金, 2020, 37(2): 106-112. HU F S, YANG M Y, YUAN Q L, et al. Investigation of the transverse splicing growth of grooves on diamond surface[J]. Cemented Carbide, 2020, 37(2): 106-112 (in Chinese). [32] 付 旺. 金刚石外圆锯切工艺及工装研究[D]. 长春: 长春理工大学. FU W. Study on cutting technology and tooling of diamond external circular saw[D].Changchun: Changchun University of Science and Technology (in Chinese). [33] 牛 奔. 指向式激光加工导向头设计研究[D]. 北京: 北京工业大学, 2012. NIU B. Research on the design of pointing laser machining guide head[D].Beijing: Beijing University of Technology, 2012 (in Chinese). [34] LIN J F, LIN J W, WEI P J. Thermal analysis for graphitization and ablation depths of diamond films[J]. Diamond and Related Materials, 2006, 15(1): 1-9. [35] AMAMOTO Y, SEMBA T. Laser-forming technique of single-point cutting tool made of nano-polycrystalline diamond. Transactions of the Japan Society of Mechanical Engineers Series C, 2012, 78(794): 3583-3593. [36] SUDHEER S K, MAHADEVAN PILLAI V P, NAYAR V U. Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations[J]. Journal of Raman Spectroscopy, 2007, 38(4): 427-435. [37] OSTENDORF A, KULIK C, BAUER T, et al. Ablation of metals and semiconductors with ultrashort pulsed lasers: improving surface qualities of microcuts and grooves[C]//Lasers and Applications in Science and Engineering. Proc SPIE 5340, Commercial and Biomedical Applications of Ultrafast Lasers Ⅳ, San Jose, Ca, USA. 2004, 5340: 153-163. [38] 王 亚, 汪建华, 王传新, 等. CVD金刚石膜激光切割工艺研究[J]. 工具技术, 2005, 39(9): 38-40. WANG Y, WANG J H, WANG C X, et al. Technical study on laser cutting technology of CVD diamond film[J]. Tool Engineering, 2005, 39(9): 38-40 (in Chinese). [39] 王 吉, 章 鹏, 张天润, 等. 高频激光对化学气相沉积金刚石的大切深实验[J]. 光学 精密工程, 2022, 30(1): 89-95. WANG J, ZHANG P, ZHANG T R, et al. Experiments of high frequency laser cutting of chemical vapor deposition diamond with large cutting depth[J]. Optics and Precision Engineering, 2022, 30(1): 89-95 (in Chinese). [40] 严 垒, 吴飞飞, 邓煜恒, 等. 激光切割CVD金刚石膜的工艺研究[J]. 金刚石与磨料磨具工程, 2012, 32(5): 6-9+14. YAN L, WU F F, DENG Y H, et al. Study on laser processing of chemical vapor deposition diamond thick film[J]. Diamond & Abrasives Engineering, 2012, 32(5): 6-9+14 (in Chinese). [41] 刘 俊. 金刚石lift-off工艺及电子器件研究[D]. 西安: 西安电子科技大学, 2020. LIU J. Study on diamond lift-off process and electronic devices[D].Xi’an: Xidian University, 2020 (in Chinese). [42] PARIKH N R, HUNN J D, MCGUCKEN E, et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Applied Physics Letters, 1992, 61(26): 3124-3126. [43] TZENG Y, WEI J, WOO J T, et al. Free-standing single-crystalline chemically vapor deposited diamond films[J]. Applied Physics Letters, 1993, 63(16): 2216-2218. [44] MOKUNO Y, CHAYAHARA A, YAMADA H, et al. Large single crystal diamond plates produced by microwave plasma CVD[J]. Materials Science Forum, 2009, 615/616/617: 991-994. [45] MOKUNO Y, CHAYAHARA A, YAMADA H. Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process[J]. Diamond and Related Materials, 2008, 17(4/5): 415-418. [46] YAMADA H, CHAYAHARA A, UMEZAWA H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size[J]. Diamond and Related Materials, 2012, 24: 29-33. [47] HEI L F, LIU J, LI C M, et al. Fabrication and characterizations of large homoepitaxial single crystal diamond grown by DC arc plasma jet CVD[J]. Diamond and Related Materials, 2012, 30: 77-84. [48] 温海浪, 陆 静, 李 晨, 等. 大尺寸单晶金刚石磨抛一体化加工研究[J]. 人工晶体学报, 2022, 51(5): 941-947. WEN H L, LU J, LI C, et al. Integrated processing of grinding and polishing for large-size single crystal diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 941-947 (in Chinese). [49] COUTO M, VAN ENEKEVORT W J P, WICHMAN B, et al. Scanning tunneling microscopy of polished diamond surfaces. Applied Surface Science, 1992, 62(4): 263-268. [50] 刘 浩, 李佳君, 李震睿, 等. 金属粉末增强机械抛光单晶金刚石[J]. 表面技术, 2019, 48(9): 321-326. LIU H, LI J J, LI Z R, et al. Mechanical polishing single crystal diamond reinforced by metal powder[J]. Surface Technology, 2019, 48(9): 321-326 (in Chinese). [51] YOSHIKAWA M, OKUZUMI F. Hot-iron-metal polishing machine for CVD diamond films and characteristics of the polished surfaces. Surface and Coatings Technology, 1997, 88(1/2/3): 197-203. [52] THORNTON A, WILKS J. The polishing of diamonds in the presence of oxidising agents[J]. Diamond and Related Materials, 1974(39): 39-42. [53] FURUSHIRO N, HIGUCHI M, YAMAGUCHI T, et al. Polishing of single point diamond tool based on thermo-chemical reaction with copper[J]. Precision Engineering, 2009, 33(4): 486-491. [54] OLLISON C D, BROWN W D, MALSHE A P, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond[J]. Diamond and Related Materials, 1999, 8(6): 1083-1090. [55] 潘 鑫. 等离子体刻蚀增强CVD金刚石膜抛光的研究[D]. 武汉: 武汉工程大学, 2015. PAN X. Study on plasma etching enhanced polishing of CVD diamond film[D].Wuhan: Wuhan Institute of Technology, 2015 (in Chinese). [56] 李思佳. 不同尺度金刚石膜MPCVD法制备工艺研究[D]. 昆明: 昆明理工大学, 2022. LI S J. Study on preparation of diamond films with different scales by mpcvd method[D]. Kunming: Kunming University of Science and Technology, 2022 (in Chinese). [57] KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54: 269-275. [58] 马玉平, 张 遥, 魏 超, 等. 飞秒激光抛光CVD金刚石涂层表面[J]. 光学 精密工程, 2019, 27(1): 164-171. MA Y P, ZHANG Y, WEI C, et al. Surface polishing of CVD diamond coating by femtosecond laser[J]. Optics and Precision Engineering, 2019, 27(1): 164-171 (in Chinese). |
[1] | GAO Jiaqing, QU Xiaoyong, WU Xiang, GUO Yonggang, WANG Yonggang, WANG Liang, TAN Xin, YANG Xinze. Tunneling Oxidation and Passivation Process of p-Type TOPCon Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 133-138. |
[2] | WANG Zhiqiang, ZHANG Qi, LIANG Ying, WANG Wenxin, CHEN Qi. Fast Preparation of Fe3O4@C Photonic Crystal Flexible Composite Films by Magnetic Field Assisted Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 49-58. |
[3] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
[4] | WU Rui, HU Yang, TANG Rongfen, YANG Qian, WANG Xu, WU Yiyi, NIE Dengpan, WANG Huanjiang. Study of Gas-Phase Parasitic Reaction Pathways for ZnO Thin Film Grown by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1608-1619. |
[5] | SHEN Xi, SHI Yonggui, WAN Yuhui, FU Ying, MA Jiaheng, YANG Haodong, WANG Yijia. Effects of Chamber Materials on the Preparation of Graphene on the Oxidized Copper Foils Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1648-1654. |
[6] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
[7] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
[8] | DING Tao, LI Qingwen, XU Yuqi, ZHONG Min. Research Progress and Prospect of Chalcogenide Perovskite of BaZrS3 and Its Preparation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 922-929. |
[9] | LIU Hong, LIU Huarong, FAN Ximei. Surface Modification of Tetrapod-Like ZnO Whisker by Cuprous Oxide and Its Photocatalytic Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1042-1050. |
[10] | LI Ganggui, HUANG Danyang, ZHAO Xiaolong, CAI Yahui, HE Yongning. Study on the Process of Preparing ZnO Thick Film by Electrochemical Deposition Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1069-1077. |
[11] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
[12] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[13] | DAI Tongguang, TAN Xin, SONG Zhicheng, GUO Yonggang, YUAN Yajing, NI Yufeng, WANG Liang. Single-Sided Deposition of Poly-Si in TOPCon Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 818-823. |
[14] | XU Yuqi, LI Qingwen, ZHONG Min. Preparation of BiOI Films with High c-axis Orientation by Chemical Vapor Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 841-847. |
[15] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||