JOURNAL OF SYNTHETIC CRYSTALS ›› 2023, Vol. 52 ›› Issue (5): 857-877.
Special Issue: 半导体薄膜与外延技术
• Advanced Epitaxy and Related Techniques • Previous Articles Next Articles
QU Pengfei1,2, JIN Peng1,2, ZHOU Guangdi1,2, WANG Zhen1,2, XU Dunzhou1,2, WU Ju1, ZHENG Hongjun1, WANG Zhanguo1,2
Received:2023-03-20
Online:2023-05-15
Published:2023-06-05
CLC Number:
QU Pengfei, JIN Peng, ZHOU Guangdi, WANG Zhen, XU Dunzhou, WU Ju, ZHENG Hongjun, WANG Zhanguo. Research Status of Iridium-Based Composite Substrates for Heteroepitaxy of Single Crystal Diamond[J]. Journal of Synthetic Crystals, 2023, 52(5): 857-877.
| [1] 金 鹏. 半导体金刚石材料与功率电子器件[M]//沈波, 唐宁. 宽禁带半导体电子材料与器件. 北京: 科学出版社, 2021: 236-279. JIN P. Semiconductor diamond materials and power electronic devices[M]//SHEN B, TANG N. Wide bandgap semiconductor electronic materials and devices. Beijing: Science Press, 2021: 236-279. [2] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672. [3] AKIMOTO I, HANDA Y, FUKAI K, et al. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance[J]. Applied Physics Letters, 2014, 105(3): 032102. [4] INYUSHKIN A V, TALDENKOV A N, RALCHENKO V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds[J]. Physical Review B, 2018, 97(14): 144305. [5] WORT C J H, BALMER R S. Diamond as an electronic material[J]. Materials Today, 2008, 11(1/2): 22-28. [6] FENG M Y, JIN P, MENG X Q, et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area[J]. Journal of Physics D: Applied Physics, 2022, 55(40): 404005. [7] MENDOZA F, MAKAROV V, WEINER B R, et al. Solar-blind field-emission diamond ultraviolet detector[J]. Applied Physics Letters, 2015, 107(20): 201605. [8] TRISCHUK W. Diamond particle detectors for high energy physics[J]. Nuclear and Particle Physics Proceedings, 2016, 273/274/275: 1023-1028. [9] WILLIAMS R J, KITZLER O, BAI Z X, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-14. [10] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308. [11] MAKITA M, KARVINEN P, GUZENKO V A, et al. Fabrication of diamond diffraction gratings for experiments with intense hard X-rays[J]. Microelectronic Engineering, 2017, 176: 75-78. [12] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds[J]. Nature, 1955, 176(4471): 51-55. [13] MATSUMOTO S, SATO Y, TSUTSUMI M, et al. Growth of diamond particles from methane-hydrogen gas[J]. Journal of Materials Science, 1982, 17(11): 3106-3112. [14] YAMADA H, CHAYAHARA A, UMEZAWA H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size[J]. Diamond and Related Materials, 2012, 24: 29-33. [15] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10): 102110. [16] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond[J]. Diamond and Related Materials, 2013, 33: 27-31. [17] MATSUSHITA A, FUJIMORI N, TSUCHIDA Y, et al. Evaluation of diamond mosaic wafer crystallinity by electron backscatter diffraction[J]. Diamond and Related Materials, 2020, 101: 107558. [18] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7(1): 1-8. [19] KOIZUMI S, INUZUKA T. Initial growth process of epitaxial diamond thin films on cBN single crystals[J]. Japanese Journal of Applied Physics, 1993, 32(9R): 3920. [20] KOIZUMI S, MURAKAMI T, INUZUKA T, et al. Epitaxial growth of diamond thin films on cubic boron nitride{111}surfaces by dc plasma chemical vapor deposition[J]. Applied Physics Letters, 1990, 57(6): 563-565. [21] INUZUKA T, KOIZUMI S, SUZUKI K. Epitaxial growth of diamond thin films on foreign substrates[J]. Diamond and Related Materials, 1992, 1(2/3/4): 175-179. [22] WANG L, PIROUZ P, ARGOITIA A, et al. Heteroepitaxially grown diamond on a c-BN{111}surface[J]. Applied Physics Letters, 1993, 63(10): 1336-1338. [23] YOSHIMOTO M, YOSHIDA K, MARUTA H, et al. Epitaxial diamond growth on sapphire in an oxidizing environment[J]. Nature, 1999, 399(6734): 340-342. [24] WOLTER S D, MCCLURE M T, GLASS J T, et al. Bias-enhanced nucleation of highly oriented diamond on titanium carbide (111) substrof diamond films on copper[J]. Journal of Materials Research, 1994, 9(4): 921-926. [25] HARTSELL M L, PIANO L S. Growth of diamond films on copper[J]. Journal of Materials Research, 1994, 9(4): 921-926. [26] FAN Q H, GRACIO J, PEREIRA E. Free-standing diamond film preparation using copper substrate[J]. Diamond and Related Materials, 1997, 6(2/3/4): 422-425. [27] ZHU W, YANG P C, GLASS J T. Oriented diamond films grown on nickel substrates[J]. Applied Physics Letters, 1993, 63(12): 1640-1642. [28] SATO Y, FUJITA H, ANDO T, et al. Local epitaxial growth of diamond on nickel from the vapour phase[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1993, 342(1664): 225-231. [29] SITAR Z, LIU W, YANG P C, et al. Heteroepitaxial nucleation of diamond on nickel[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 276-282. [30] YANG P C, LIU W, SCHLESSER R, et al. Surface melting in the heteroepitaxial nucleation of diamond on Ni[J]. Journal of Crystal Growth, 1998, 187(1): 81-88. [31] LIU W, TUCKER D A, YANG P C, et al. Nucleation of oriented diamond particles on cobalt substrates[J]. Journal of Applied Physics, 1995, 78(2): 1291-1296. [32] TACHIBANA T, YOKOTA Y, NISHIMURA K, et al. Heteroepitaxial diamond growth on platinum (111) by the Shintani process[J]. Diamond and Related Materials, 1996, 5(3/4/5): 197-199. [33] TACHIBANA T, YOKOTA Y, MIYATA K, et al. Diamond films heteroepitaxially grown on platinum (111)[J]. Physical Review B, 1997, 56(24): 15967-15981. [34] BAUER T, SCHRECK M, GSELL S, et al. Epitaxial rhenium buffer layers on Al2O3(0001): a substrate for the deposition of (111)-oriented heteroepitaxial diamond films[J]. Physica Status Solidi (a), 2003, 199(1): 19-26. [35] JIANG X, KLAGES C P, ZACHAI R, et al. Epitaxial diamond thin films on (001) silicon substrates[J]. Applied Physics Letters, 1993, 62(26): 3438-3440. [36] HESSMER R, SCHRECK M, GEIER S, et al. The influence of the growth process on the film texture of epitaxially nucleated diamond on silicon (001)[J]. Diamond and Related Materials, 1995, 4(4): 410-415. [37] JIA C L, URBAN K, JIANG X. Heteroepitaxial diamond films on silicon (001): interface structure and crystallographic relations between film and substrate[J]. Physical Review B, Condensed Matter, 1995, 52(7): 5164-5171. [38] JIANG X, KLAGES C P. Recent developments in heteroepitaxial nucleation and growth of diamond on silicon[J]. Physica Status Solidi (a), 1996, 154(1): 175-183. [39] STONER B R, GLASS J T. Textured diamond growth on (100) β-SiC via microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 1992, 60(6): 698-700. [40] KOHL R, WILD C, HERRES N, et al. Oriented nucleation and growth of diamond films on β-SiC and Si[J]. Applied Physics Letters, 1993, 63(13): 1792-1794. [41] YAITA J, IWASAKI T, NATAL M, et al. Heteroepitaxial growth of diamond films on 3C-SiC/Si substrates with utilization of antenna-edge microwave plasma CVD for nucleation[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DH13. [42] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium[J]. Japanese Journal of Applied Physics, 1996, 35(8B): L1072. [43] OHTSUKA K, FUKUDA H, SUZUKI K, et al. Fabrication of epitaxial diamond thin film on iridium[J]. Japanese Journal of Applied Physics, 1997, 36(9A): L1214. [44] DAI Z, BEDNARSKI-MEINKE C, GOLDING B. Heteroepitaxial diamond film growth: the a-plane sapphire-iridium system[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 552-556. [45] SCHRECK M, ROLL H, STRITZKER B. Diamond/Ir/SrTiO3: a material combination for improved heteroepitaxial diamond films[J]. Applied Physics Letters, 1999, 74(5): 650-652. [46] LEE K H, SAADA S, ARNAULT J C, et al. Epitaxy of iridium on SrTiO3/Si (001): a promising scalable substrate for diamond heteroepitaxy[J]. Diamond and Related Materials, 2016, 66: 67-76. [47] GSELL S, BAUER T, GOLDFUß J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers[J]. Applied Physics Letters, 2004, 84(22): 4541-4543. [48] JACCODINE R J. Surface energy of germanium and silicon[J]. Journal of the Electrochemical Society, 1963, 110(6): 524. [49] OSHCHERIN B N. On surface energies of ANB8-N semiconducting compounds[J]. Physica Status Solidi (a), 1976, 34(2): K181-K186. [50] SWENSON C A. Recommended values for the thermal expansivity of silicon from 0 to 1000 K[J]. Journal of Physical and Chemical Reference Data, 1983, 12(2): 179-182. [51] LI Z, BRADT R C. Thermal expansion of the cubic (3C) polytype of SiC[J]. Journal of Materials Science, 1986, 21(12): 4366-4368. [52] SKRIVER H L, ROSENGAARD N M. Surface energy and work function of elemental metals[J]. Physical Review B, Condensed Matter, 1992, 46(11): 7157-7168. [53] KÖKTEN H, ERKOÇ Ş. Structural and electronic properties of c-BN(110) surface and surface point defects[J]. International Journal of Modern Physics C, 2006, 17(6): 795-803. [54] PRELAS M A, GIELISSE P, POPOVICI G, et al. Wide band gap electronic materials[M]. Dordrecht: Springer Netherlands, 1995. [55] HAYNES W M. CRC handbook of chemistry and physics[M]. Cleveland, Ohio: CRC Press, 2016. [56] IZYUMSKAYA N, DEMCHENKO D O, DAS S, et al. Recent development of boron nitride towards electronic applications[J]. Advanced Electronic Materials, 2017, 3(5): 1600485. [57] JACOBSON P, STOUPIN S. Thermal expansion coefficient of diamond in a wide temperature range[J]. Diamond and Related Materials, 2019, 97: 107469. [58] TOKO K, SUEMASU T. Metal-induced layer exchange of group IV materials[J]. Journal of Physics D: Applied Physics, 2020, 53(37): 373002. [59] LINNIK S A, ZENKIN S P, GAYDAYCHUK A V. Heteroepitaxial diamond growth from the gas phase: problems and prospects (review)[J]. Instruments and Experimental Techniques, 2021, 64(2): 177-189. [60] JIANG X, SCHIFFMANN K, KLAGES C P, et al. Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001)[J]. Journal of Applied Physics, 1998, 83(5): 2511-2518. [61] YAITA J, NATAL M, SADDOW S E, et al. Influence of high-power density plasma on heteroepitaxial diamond nucleation on 3C-SiC surface[J]. Applied Physics Express, 2017, 10(4): 045502. [62] VERSTRAETE M J, CHARLIER J C. Why is iridium the best substrate for single crystal diamond growth?[J]. Applied Physics Letters, 2005, 86(19): 191917. [63] WANG Y, WANG W H, SHU G Y, et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study[J]. Journal of Crystal Growth, 2021, 560/561: 126047. [64] GHIRINGHELLI L M, LOS J H, MEIJER E J, et al. Modeling the phase diagram of carbon[J]. Physical Review Letters, 2005, 94(14): 145701. [65] GOODWIN D G. Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry[J]. Journal of Applied Physics, 1993, 74(11): 6888-6894. [66] BRUNE H. Growth modes[M]//Encyclopedia of Materials: Science and Technology. Amsterdam: Elsevier, 2001: 3683-3692. [67] LEE S T, LIN Z D, JIANG X. CVD diamond films: nucleation and growth[J]. Materials Science and Engineering: R: Reports, 1999, 25(4): 123-154. [68] BUTLER J E, WOODIN R L, BROWN L M, et al. Thin film diamond growth mechanisms[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1993, 342(1664): 209-224. [69] VIETZKE E, PHILIPPS V, FLASKAMP K, et al. The reaction of atomic hydrogen with a-C∶H and diamond films[J]. Surface and Coatings Technology, 1991, 47(1/2/3): 156-161. [70] STEKOLNIKOV A A, FURTHMÜLLER J, BECHSTEDT F. Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction[J]. Physical Review B, 2002, 65(11): 115318. [71] JIANG X, KLAGES C P. Heteroepitaxial diamond growth on (100) silicon[J]. Diamond and Related Materials, 1993, 2(5/6/7): 1112-1113. [72] DAENEN M, WILLIAMS O A, D'HAEN J, et al. Seeding, growth and characterization of nanocrystalline diamond films on various substrates[J]. Physica Status Solidi (a), 2006, 203(12): 3005-3010. [73] YUGO S, KANAI T, KIMURA T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition[J]. Applied Physics Letters, 1991, 58(10): 1036-1038. [74] YUGO S, SEMOTO K, KIMURA T. The cause of suppression of the diamond nucleation density[J]. Diamond and Related Materials, 1996, 5(1): 25-28. [75] SCHRECK M, BAUR T, STRITZKER B. Optical characterization of the cathode plasma sheath during the biasing step for diamond nucleation on silicon[J]. Diamond and Related Materials, 1995, 4(5/6): 553-558. [76] KÁTAI S, KOVATS A, MAROS I, et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 317-321. [77] YUGO S, KIMURA T, KANAI T. Nucleation mechanisms of diamond in plasma chemical vapor deposition[J]. Diamond and Related Materials, 1993, 2(2/3/4): 328-332. [78] JIANG X, SCHIFFMANN K, KLAGES C. Nucleation and initial growth phase of diamond thin films on (100) silicon[J]. Physical Review B, Condensed Matter, 1994, 50(12): 8402-8410. [79] STONER B R, MA G, WOLTER S D, et al. Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy[J]. Physical Review B, Condensed Matter, 1992, 45(19): 11067-11084. [80] LIFSHITZ Y, KOHLER T, FRAUENHEIM T, et al. The mechanism of diamond nucleation from energetic species[J]. Science, 2002, 297(5586): 1531-1533. [81] SCHRECK M, BAUER T, GSELL S, et al. Domain formation in diamond nucleation on iridium[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 262-267. [82] GSELL S, SCHRECK M, BENSTETTER G, et al. Combined AFM-SEM study of the diamond nucleation layer on Ir(001)[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 665-670. [83] SCHRECK M, GSELL S, BRESCIA R, et al. Diamond nucleation on iridium: local variations of structure and density within the BEN layer[J]. Diamond and Related Materials, 2009, 18(2/3): 107-112. [84] SCHRECK M. Single crystal diamond growth on iridium[M]//Comprehensive Hard Materials. Amsterdam: Elsevier, 2014: 269-304. [85] BAUER T, SCHRECK M, HORMANN F, et al. Analysis of the total carbon deposition during the bias enhanced nucleation of diamond on Ir/SrTiO3 (001) using 13C-methane[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 493-498. [86] GSELL S, BERNER S, BRUGGER T, et al. Comparative electron diffraction study of the diamond nucleation layer on Ir(001)[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1029-1034. [87] BRESCIA R, SCHRECK M, GSELL S, et al. Transmission electron microscopy study of the very early stages of diamond growth on iridium[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1045-1050. [88] AIDA H, KIM S W, IKEJIRI K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: detailed study on the growth scheme of continuous diamond layers on diamond microneedles[J]. Diamond and Related Materials, 2017, 75: 34-38. [89] DAI Z, LI A P, BEDNARSKI C, et al. Epitaxial iridium growth on strontium titanate[J]. MRS Online Proceedings Library, 2000, 648(1): 1135. [90] BENSALAH H, STENGER I, SAKR G, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium[J]. Diamond and Related Materials, 2016, 66: 188-195. [91] KIM S W, TAKAYA R, HIRANO S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (1120) misoriented substrate by step-flow mode[J]. Applied Physics Express, 2021, 14(11): 115501. [92] DAI Z, BEDNARSKI-MEINKE C, LOLOEE R, et al. Epitaxial (100) iridium on A-plane sapphire: a system for wafer-scale diamond heteroepitaxy[J]. Applied Physics Letters, 2003, 82(22): 3847-3849. [93] LEE S T, LIFSHITZ Y. The Road to diamond wafers[J]. Nature, 2003, 424(6948): 500-501. [94] WANG Q J, WU G, NEWHOURSE-ILLIGE T A, et al. Heteroepitaxial diamond film deposition on KTaO3 substrates via single-crystal iridium buffer layers[J]. Diamond and Related Materials, 2020, 110: 108117. [95] ISHIDA J, YAMADA T, SAWABE A, et al. Large remanent polarization and coercive force by 100% 180° domain switching in epitaxial Pb(Zr0.5Ti0.5)O3 capacitor[J]. Applied Physics Letters, 2002, 80(3): 467-469. [96] ISHIKAWA T, ABE Y, SHINKAI S, et al. Epitaxial Ir thin film on (001) MgO single crystal prepared by sputtering[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9A): 5747-5748. [97] TRUPINA L, NEDELCU L, BANCIU M G, et al. Texture and interface characterization of iridium thin films grown on MgO substrates with different orientations[J]. Journal of Materials Science, 2020, 55(4): 1753-1764. [98] HUO X D, ZHOU G D, FENG M Y, et al. Effects of deposition time on growth of Ir buffer layer on MgO(100) support layer by magnetron sputtering[J]. Results in Physics, 2021, 30: 104878. [99] SAITO T, TSURUGA S, OHYA N, et al. Epitaxial nucleation of diamond on an iridium substrate by bias treatment, for microwave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 1998, 7(9): 1381-1384. [100] SUZUKI K, FUKUDA H, YAMADA T, et al. Epitaxially grown free-standing diamond platelet[J]. Diamond and Related Materials, 2001, 10(12): 2153-2156. [101] ANDO Y, KUWABARA J, SUZUKI K, et al. Patterned growth of heteroepitaxial diamond[J]. Diamond and Related Materials, 2004, 13(11/12): 1975-1979. [102] ANDO Y, KANEKO M, SUZUKI K, et al. Fabrication of free-standing diamond platelet by patterned heteroepitaxial growth[J]. New Diamond and Frontier Carbon Technology, 2006, 16(2): 71-78. [103] YOSHIKAWA T, KODAMA H, KONO S, et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth[J]. Thin Solid Films, 2015, 594: 120-128. [104] WASHIYAMA S, MITA S, SUZUKI K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001)[J]. Applied Physics Express, 2011, 4(9): 095502. [105] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching[J]. Thin Solid Films, 2016, 600: 142-145. [106] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J]. Diamond and Related Materials, 2017, 72: 114-118. [107] ICHIKAWA K, KURONE K, KODAMA H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir[J]. Diamond and Related Materials, 2019, 94: 92-100. [108] AIDA H, IKEJIRI K, KIM S W, et al. Overgrowth of diamond layers on diamond microneedles: new concept for freestanding diamond substrate by heteroepitaxy[J]. Diamond and Related Materials, 2016, 66: 77-82. [109] AIDA H, KIM S W, IKEJIRI K, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles[J]. Applied Physics Express, 2016, 9(3): 035504. [110] KASU M, TAKAYA R, KIM S W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates[J]. Diamond and Related Materials, 2022, 126: 109086. [111] KASU M, TAKAYA R, MASAKI R, et al. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate[J]. Diamond and Related Materials, 2022, 128: 109287. [112] HORMANN F, ROLL H, SCHRECK M, et al. Epitaxial Ir layers on SrTiO3 as substrates for diamond nucleation: deposition of the films and modification in the CVD environment[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 256-261. [113] KOSLOWSKI B, NOTZ R, ZIEMANN P. Epitaxial growth of iridium on strontium-titanate studied by in situ scanning tunneling microscopy[J]. Surface Science, 2002, 496(3): 153-159. [114] BEDNARSKI C, DAI Z, LI A P, et al. Studies of heteroepitaxial growth of diamond[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 241-245. [115] CHAVANNE A, ARNAULT J C, BARJON J, et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis[J]. Surface Science, 2011, 605(5/6): 564-569. [116] PECORARO S, LE NORMAND F, ARNAULT J C. Behaviour of textured Ir layers exposed to the HFCVD environment of diamond[J]. Surface Science, 2000, 461(1/2/3): 129-136. [117] ZENKIN S, GAYDAYCHUK A, LINNIK S. Effects of sputtering gas on the microstructure of Ir thin films deposited by HiPIMS and pulsed DC sputtering[J]. Surface and Coatings Technology, 2021, 412: 127038. [118] SCHRECK M, SCHURY A, HORMANN F, et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: experimental results and numerical simulations[J]. Journal of Applied Physics, 2002, 91(2): 676-685. [119] HORMANN F, SCHRECK M, STRITZKER B. First stages of diamond nucleation on iridium buffer layers[J]. Diamond and Related Materials, 2001, 10(9/10): 1617-1621. [120] BRESCIA R, SCHRECK M, MICHLER J, et al. Interaction of small diamond islands on iridium: a finite element simulation study[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 705-710. [121] SCHRECK M, HORMANN F, GSELL S, et al. Transmission electron microscopy study of the diamond nucleation layer on iridium[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 460-464. [122] CHAVANNE A, ARNAULT J C, BARJON J, et al. Effect of bias voltage on diamond nucleation on iridium during BEN[C]//AIP Conference Proceedings, 2010, 1292(1): 137-140. [123] CHAVANNE A, BARJON J, VILQUIN B, et al. Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium[J]. Diamond and Related Materials, 2012, 22: 52-58. [124] VAISSIERE N, SAADA S, BOUTTEMY M, et al. Heteroepitaxial diamond on iridium: new insights on domain formation[J]. Diamond and Related Materials, 2013, 36: 16-25. [125] ZENKIN S, GAYDAYCHUK A, MITULINSKY A, et al. Cu-Ir thin film alloy as a potential substrate for the heteroepitaxial diamond growth[J]. Materials Letters, 2022, 321: 132441. [126] GOTO T, VARGAS R, HIRAI T. Preparation of iridium and platinum films by MOCVD and their properties[J]. Le Journal De Physique IV, 1993, 3(C3): C3-297. [127] VARGAS R, GOTO T, ZHANG W, et al. Epitaxial growth of iridium and platinum films on sapphire by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1994, 65(9): 1094-1096. [128] VARGAS GARCIA J R, GOTO T. Chemical vapor deposition of iridium, platinum, rhodium and palladium[J]. Materials Transactions, 2003, 44(9): 1717-1728. [129] WANG W H, YANG S L, HAN J C, et al. Role of surface chemistry in determining the heteroepitaxial growth of Ir films on a-plane α-Al2O3 single crystals[J]. Surfaces and Interfaces, 2022, 32: 102172. [130] SAMOTO A, ITO S, HOTTA A, et al. Investigation of heterostructure between diamond and iridium on sapphire[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1039-1044. [131] MEYER F, OESER S, GRAFF A, et al. Effect of substrate bias on the growth behavior of iridium on A-plane sapphire using radio frequency sputtering at low temperatures[J]. Thin Solid Films, 2018, 650: 65-70. [132] CHOI U, SHIN H, KWAK T, et al. Growth and characterization of heteroepitaxial (001) and (111) diamond on Ir/sapphire structures[J]. Diamond and Related Materials, 2022, 121: 108770. [133] KIM S W, KAWAMATA Y, TAKAYA R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (1120) sapphire substrate[J]. Applied Physics Letters, 2020, 117(20): 202102. [134] DANGWAL PANDEY A, KRAUSERT K, FRANZ D, et al. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy[J]. Journal of Applied Physics, 2016, 120(7): 075304. [135] HAMALAINEN J, KEMELL M, MUNNIK F, et al. Atomic layer deposition of iridium oxide thin films from Ir(acac)3 and ozone[J]. Chemistry of Materials, 2008, 20(9): 2903-2907. [136] GOLDING B, BEDNARSKI-MEINKE C, DAI Z. Diamond heteroepitaxy: pattern formation and mechanisms[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 545-551. [137] TANG Y H, BI B, GOLDING B. Diamond heteroepitaxial lateral overgrowth[J]. MRS Online Proceedings Library, 2014, 1734(1): 20-25. [138] TANG Y H, GOLDING B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth[J]. Applied Physics Letters, 2016, 108(5): 052101. [139] WU Y, QI J, LEE C H, et al. Diamond growth on Ir/CaF2/Si substrates[J]. Diamond and Related Materials, 2003, 12(10/11): 1675-1680. [140] BAUER T, GSELL S, SCHRECK M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 314-317. [141] TATSUYAMA T T. Molecular beam epitaxy of SrTiO3 films on Si(100)-2×1 with SrO buffer layer[J]. Japanese Journal of Applied Physics, 1998, 37(8R): 4454. [142] MCKEE R A, WALKER F J, CHISHOLM M F. Crystalline oxides on silicon: the first five monolayers[J]. Physical Review Letters, 1998, 81(14): 3014-3017. [143] LETTIERI J, HAENI J H, SCHLOM D G. Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(4): 1332-1340. [144] NORGA G J, GUILLER A, MARCHIORI C, et al. Growth of perovskites with crystalline interfaces on Si(100)[J]. MRS Online Proceedings Library, 2003, 786(1): 73. [145] WEI Y, HU X M, LIANG Y, et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002, 20(4): 1402. [146] NIU G, SAINT-GIRONS G, VILQUIN B, et al. Molecular beam epitaxy of SrTiO3 on Si (001): early stages of the growth and strain relaxation[J]. Applied Physics Letters, 2009, 95(6): 062902. [147] CHOI M, POSADAS A, DARGIS R, et al. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy[J]. Journal of Applied Physics, 2012, 111(6): 064112. [148] LIANG Y, WEI Y, HU X M, et al. Heteroepitaxy of SrTiO3 on vicinal Si(001): growth and kinetic effects[J]. Journal of Applied Physics, 2004, 96(6): 3413-3416. [149] LEE K H, SAADA S, ARNAULT J C, et al. Effect of bias enhanced nucleation parameters on diamond heteroepitaxy on Ir/SrTiO3/Si (001)[C]//MRS Spring meeting 2016. Phoenix, United States, 2016. [150] LEE K H, SAADA S, TRANCHANT N, et al. Diamond heteroepitaxy on Ir/SrTiO3/Si (001) substrates: from nucleation to thick films characterizations[C]//28th international conference on diamond and related materials. Gothenborg, Sweden, 2017. [151] ARNAULT J C, LEE K H, DELCHEVALRIE J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral Schottky diodes[J]. Diamond and Related Materials, 2020, 105: 107768. [152] DUWEZ P, BROWN F H, ODELL F. The zirconia-yttria system[J]. Journal of the Electrochemical Society, 1951, 98(9): 356. [153] MORITA M, FUKUMOTO H, IMURA T, et al. Growth of crystalline zirconium dioxide films on silicon[J]. Journal of Applied Physics, 1985, 58(6): 2407-2409. [154] LEGAGNEUX P, GARRY G, DIEUMEGARD D, et al. Epitaxial growth of yttria-stabilized zirconia films on silicon by ultrahigh vacuum ion beam sputter deposition[J]. Applied Physics Letters, 1988, 53(16): 1506-1508. [155] FORK D K, FENNER D B, CONNELL G A N, et al. Epitaxial yttria-stabilized zirconia on hydrogen-terminated Si by pulsed laser deposition[J]. Applied Physics Letters, 1990, 57(11): 1137-1139. [156] DUBBINK D, KOSTER G, RIJNDERS G. Growth mechanism of epitaxial YSZ on Si by pulsed laser deposition[J]. Scientific Reports, 2018, 8(1): 1-10. [157] SU Q X, LI L, ZHAO Y Y, et al. Epitaxial growth of yttria-stabilized zirconia films on silicon by R.F. magnetron sputtering[J]. Modern Physics Letters B, 1991, 5(27): 1829-1835. [158] HORITA S, ABE Y, KAWADA T. Heteroepitaxial growth of yttria-stabilized zirconia film on oxidized silicon by reactive sputtering[J]. Thin Solid Films, 1996, 281/282: 28-31. [159] FUKUMOTO H, IMURA T, OSAKA Y. Heteroepitaxial growth of yttria-stabilized zirconia (YSZ) on silicon[J]. Japanese Journal of Applied Physics, 1988, 27(8A): L1404. [160] ZHOU G D, JIN P, WANG Y, et al. X-ray diffraction analysis of the yttria stabilized zirconia powder by mechanical alloying and sintering[J]. Ceramics International, 2020, 46(7): 9691-9697. [161] BARDAL A, MATTHEE T, WECKER J, et al. Initial stages of epitaxial growth of Y-stabilized ZrO2 thin films on a substrates[J]. Journal of Applied Physics, 1994, 75(6): 2902-2910. [162] JIA Q X, WU X D, ZHOU D S, et al. Deposition of epitaxial yttria-stabilized zirconia on single-crystal Si and subsequent growth of an amorphous SiO2 interlayer[J]. Philosophical Magazine Letters, 1995, 72(6): 385-391. [163] WANG S J, ONG C K, YOU L P, et al. Epitaxial growth of yittria-stabilized zirconia oxide thin film on natively oxidized silicon wafer without an amorphous layer[J]. Semiconductor Science and Technology, 2000, 15(8): 836-839. [164] WANG S J, ONG C K. Epitaxial Y-stabilized ZrO2 films on silicon: dynamic growth process and interface structure[J]. Applied Physics Letters, 2002, 80(14): 2541-2543. [165] HATA T, SASAKI K, ICHIKAWA Y, et al. Yttria-stabilized zirconia (YSZ) heteroepitaxially grown on Si substrates by reactive sputtering[J]. Vacuum, 2000, 59(2/3): 381-389. [166] KANEKO S, AKIYAMA K, ITO T, et al. Single domain epitaxial growth of yttria-stabilized zirconia on Si(111) substrate[J]. Ceramics International, 2008, 34(4): 1047-1050. [167] JIANG J, SHEN W D, HERTZ J L. Fabrication of epitaxial zirconia and ceria thin films with arbitrary dopant and host atom composition[J]. Thin Solid Films, 2012, 522: 66-70. [168] MIZUTANI N, WAKIYA N, HIJIKATA M Y K, et al. Preparation of epitaxial YSZ thin film on Si(001) using metal and oxide targets by RF-magnetron sputtering[J]. Ferroelectrics, 2001, 260(1): 249-254. [169] BUNT P, VARHUE W J, ADAMS E, et al. Initial stages of growth of heteroepitaxial yttria-stabilized zirconia films on silicon substrates[J]. Journal of the Electrochemical Society, 2000, 147(12): 4541. [170] QU P F, JIN P, ZHOU G D, et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering[J]. Surface and Coatings Technology, 2023, 456: 129267. [171] KHOA T D, HORII S, HORITA S. High deposition rate of epitaxial (100) Iridium film on (100)YSZ/(100)Si substrate by RF sputtering deposition[J]. Thin Solid Films, 2002, 419(1/2): 88-94. [172] FISCHER M, GSELL S, SCHRECK M, et al. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1035-1038. [173] FAN L S, JACOBS C B, ROULEAU C M, et al. Stabilizing Ir(001) epitaxy on yttria-stabilized zirconia using a thin Ir seed layer grown by pulsed laser deposition[J]. Crystal Growth & Design, 2017, 17(1): 89-94. [174] ZHOU G D, QU P F, HUO X D, et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: growth kinetics and the effects of oxygen[J]. Results in Physics, 2023, 47: 106357. [175] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 151905. [176] SCHRECK M, MAYR M, KLEIN O, et al. Multiple role of dislocations in the heteroepitaxial growth of diamond: a brief review[J]. Physica Status Solidi (a), 2016, 213(8): 2028-2035. |
| [1] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
| [2] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
| [3] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
| [4] | LAN Feifei, LIU Shasha, FANG Shishu, WANG Yingmin, CHENG Hongjuan. Research Progress on Controlling the Thermal Boundary Resistance of GaN on Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 913-921. |
| [5] | DING Tao, LI Qingwen, XU Yuqi, ZHONG Min. Research Progress and Prospect of Chalcogenide Perovskite of BaZrS3 and Its Preparation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 922-929. |
| [6] | XIAO Hongyu, LI Yong, TIAN Changhai, ZHANG Weixi, WANG Qiang, XIAO Zhengguo, WANG Ying, JIN Hui, BAO Zhigang, ZHOU Zhenxiang. Study on the Growth of Type-Ib Diamond Single Crystal and the Temperature Field Distribution in the Synthesis Cavities [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 959-966. |
| [7] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
| [8] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
| [9] | XU Yuqi, LI Qingwen, ZHONG Min. Preparation of BiOI Films with High c-axis Orientation by Chemical Vapor Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 841-847. |
| [10] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
| [11] | ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584. |
| [12] | ZHANG Yalin, AN Xiaoming, GE Xingang, JIANG Long, LI Yifeng. Thermal Conductivity Test of Large-Size Diamond by Laser Flash Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 503-510. |
| [13] | LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 181-193. |
| [14] | HAO Jinglin, DENG Lifen, WANG Kaiyue, SONG Hui, JIANG Nan, KAZUHITO Nishimura. Synthesis of Doped Diamond by High-Pressure and High-Temperature: a Review [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 194-209. |
| [15] | LI Chuanhao, LI Zhonghui, PENG Daqing, ZHANG Dongguo, YANG Qiankun, LUO Weike. Study on vdW Epitaxy Mechanism and Stress Modulation of Large-Size GaN Microwave Material [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 252-257. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS