JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (10): 1675-1687.
• Review • Previous Articles Next Articles
AN Kang1, XU Guangyu1, WU Haiping1, ZHANG Yachen1, ZHANG Yongkang1, LI Lijun1, LI Hong1, ZHANG Xufang2, LIU Fengbin1, LI Chengming3
Received:
2024-07-08
Online:
2024-10-15
Published:
2024-10-21
CLC Number:
AN Kang, XU Guangyu, WU Haiping, ZHANG Yachen, ZHANG Yongkang, LI Lijun, LI Hong, ZHANG Xufang, LIU Fengbin, LI Chengming. Research Progress in Chemical Mechanical Polishing of Diamond[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1675-1687.
[1] 王小安, 汪建华, 吕 琳, 等. 高浓度氩气对金刚石膜的质量、晶粒尺寸和硬度的影响[J]. 金刚石与磨料磨具工程, 2015, 35(5): 20-24. WANG X A, WANG J H, LV L, et al. Effect of high Ar concentration on quality, grain size and hardness of diamond films[J]. Diamond & Abrasives Engineering, 2015, 35(5): 20-24 (in Chinese). [2] KHABASHESKU V, FILONENKO V, BAGRAMOV R, et al. Nanoengineered polycrystalline diamond composites with advanced wear resistance and thermal stability[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59560-59566. [3] WANG L, BAI G, LI N, et al. Unveiling interfacial structure and improving thermal conductivity of Cu/diamond composites reinforced with Zr-coated diamond particles[J]. Vacuum, 2022,202:111133. [4] WILDI T, KISS M, QUACK N. Diffractive optical elements in single crystal diamond[J]. Optics Letters, 2020, 45(13): 3458. [5] ZHUANG G L, ZONG W J, TANG Y F, et al. Crystal orientation and material type related suppression to the graphitization wear of micro diamond tool[J]. Diamond and Related Materials, 2022, 127: 109182. [6] HAO X B, LIU B J, LI Y C, et al. Diamond single crystal-polycrystalline hybrid microchannel heat sink strategy for directional heat dissipation of hot spots in power devices[J]. Diamond and Related Materials, 2023, 135: 109858. [7] 赵正平. 超宽禁带半导体金刚石功率电子学研究的新进展[J]. 半导体技术, 2021, 46(1): 1-14. ZHAO Z P. New research progress in ultra wide bandgap semiconductor diamond power electronics[J]. Semiconductor Technology, 2021, 46(1): 1-14 (in Chinese). [8] ROY S, BALLA V K, MALLIK A K, et al. A comprehensive study of mechanical and chemo-mechanical polishing of CVD diamond[J]. Materials Today: Proceedings, 2018, 5(3): 9846-9854. [9] CHENG C Y, TSAI H Y, WU C H, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films[J]. Diamond and Related Materials, 2005, 14(3): 622-625. [10] LUO H, AJMAL K M, LIU W, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021,3(2):22003. [11] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7: 44462. [12] 吴百融, 薛常喜. 机械研磨单晶金刚石刀具前刀面精度[J]. 金刚石与磨料磨具工程, 2019, 39(2): 21-25. WU B R, XUE C X. Precision of rake face of mechanically lapped single crystal diamond tool[J]. Diamond & Abrasives Engineering, 2019, 39(2): 21-25 (in Chinese). [13] LEE Y C, LIN S J, BUCK V, et al. Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique[J]. Diamond and Related Materials, 2008, 17(4): 446-450. [14] MATSUMAE T, KURASHIMA Y, UMEZAWA H, et al. Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air[J]. Microelectronic Engineering, 2018, 195: 68-73. [15] 严朝辉, 汪建华, 满卫东, 等. CVD金刚石厚膜的机械抛光研究[J]. 金刚石与磨料磨具工程, 2007, 27(3): 32-35. YAN Z H, WANG J H, MAN W D, et al. Study of mechanical polishing of CVD diamond thick films[J]. Diamond & Abrasives Engineering, 2007, 27(3): 32-35 (in Chinese). [16] TANG C J, NEVES A J, FERNANDES A J S, et al. A new elegant technique for polishing CVD diamond films[J]. Diamond and Related Materials, 2003, 12(8): 1411-1416. [17] WEIMA J A, VON BORANY J, GRÖTZSCHEL R, et al. Investigating contaminants on thermochemically refined surfaces of chemical vapor deposited diamond films[J]. Journal of the Electrochemical Society, 2002, 149(5): G301. [18] ZONG W J, ZHANG J J, LIU Y, et al. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement[J]. Applied Surface Science, 2014, 316: 617-624. [19] OZKAN A M, MALSHE A P, BROWN W D. Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates[J]. Diamond and Related Materials, 1997, 6(12): 1789-1798. [20] YOSHIDA A, DEGUCHI M, KITABATAKE M, et al. Atomic level smoothing of CVD diamond films by gas cluster ion beam etching[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 112: 248-251. [21] GROGAN D F, ZHAO T, BOVARD B G, et al. Planarizing technique for ion-beam polishing of diamond films[J]. Applied Optics, 1992, 31(10): 1483-1487. [22] DU C Y, DAI Y F, GUAN C L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753. [23] LIU N, SUGAWARA K, YOSHITAKA N, et al. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate[J]. Scientific Reports, 2020, 10: 19432. [24] LUO H, AJMAL K M, LIU W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma[J]. Carbon, 2021, 182: 175-184. [25] HAISMA J, VAN DER KRUIS F J H M, SPIERINGS B A C M, et al. Damage-free tribochemical polishing of diamond at room temperature: a finishing technology[J]. Precision Engineering, 1992, 14(1): 20-27. [26] HITCHINER M P, WILKS E M, WILKS J. The polishing of diamond and diamond composite materials[J]. Wear, 1984, 94(1): 103-120. [27] HARRIS D C. Materials for infrared windows and domes: properties and performance[Z]. Portland: Copyright Clearance Center, 2000: 24. [28] ZHENG Y T, YE H T, THORNTON R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing[J]. Diamond and Related Materials, 2020, 101: 107600. [29] LIANG Y F, ZHENG Y T, WEI J J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction[J]. Diamond and Related Materials, 2021, 117: 108461. [30] 徐 锋, 左敦稳, 王 珉, 等. CVD金刚石厚膜的机械抛光及其残余应力的分析[J]. 人工晶体学报, 2004, 33(3): 436-440. XU F, ZUO D W, WANG M, et al. Study on mechanical polishing for CVD diamond thick film and its residual stresses[J]. Journal of Synthetic Crystals, 2004, 33(3): 436-440 (in Chinese). [31] KUBOTA A, NAGAE S, MOTOYAMA S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains[J]. Diamond and Related Materials, 2020, 101: 107644. [32] AN K, LIU P, ZHANG Y K, et al. Prestressing method to inhibit crack initiation and expansion in a large-sized diamond film during polishing[J]. Diamond and Related Materials, 2024, 144: 111022. [33] 刘敬明, 蒋 政, 张恒大, 等. 大面积CVD金刚石膜的热铁板抛光[J]. 北京科技大学学报, 2001, 23(1): 42-44. LIU J M, JIANG Z, ZHANG H D, et al. Thermo-chemical polishing of large area CVD diamond films[J]. Chinese Journal of Engineering, 2001, 23(1): 42-44 (in Chinese). [34] 王德政, 周克崧, 韩培刚, 等. 金刚石薄膜机械抛光的研究[J]. 广东有色金属学报, 1997(1):43-46. WANG D Z, ZHOU K S, HAN P G, et al. Research on mechanical polishing of diamond films[J]. Journal of Guangdong Nonferrous Metals, 1997(1):43-46(in Chinese). [35] ZAITSEV A M, KOSACA G, RICHARZ B, et al. Thermochemical polishing of CVD diamond films[J]. Diamond and Related Materials, 1998, 7(8): 1108-1117. [36] 马泳涛, 张建立, 李 钝, 等. 热铁盘法抛光CVD金刚石的微观表面研究[J]. 金刚石与磨料磨具工程, 2008, 28(4): 57-61+65. MA Y T, ZHANG J L, LI D, et al. Study on micro surfaces of CVD diamond polished by hot metal plate[J]. Diamond & Abrasives Engineering, 2008, 28(4): 57-61+65 (in Chinese). [37] PRIESKE M, VOLLERTSEN F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation[J]. Materials Today: Proceedings, 2021, 40: 1-4. [38] KOMLENOK M, PASHININ V, SEDOV V, et al. Femtosecond and nanosecond laser polishing of rough polycrystalline diamond[J]. Laser Physics, 2022, 32(8): 084003. [39] NAGASE T, KATO H, PAHLOVY S A, et al. Nanosmoothing of single crystal diamond chips by 1 keV Ar+ ion bombardment[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 263-267. [40] MI S C, TOROS A, GRAZIOSI T, et al. Non-contact polishing of single crystal diamond by ion beam etching[J]. Diamond and Related Materials, 2019, 92: 248-252. [41] YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67(1): 353-356. [42] ZHENG Y T, JIA Y W, LIU J L, et al. Surface etching evolution of mechanically polished single crystal diamond with subsurface cleavage in microwave hydrogen plasma: topography, state and electrical properties[J]. Vacuum, 2022, 199: 110932. [43] XIAO C, HSIA F C, SUTTON-COOK A, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: a review of mechanisms and processes[J]. Carbon, 2022, 196: 29-48. [44] THORNTON A G, WILKS J. The polishing of diamonds in the presence of oxidising agents[J]. Diamond and Related Materials, 1974(39):39-42. [45] KÜHNLE J, WEIS O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents[J]. Surface Science, 1995, 340: 16-22. [46] OLLISON C D, BROWN W D, MALSHE A P, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond[J]. Diamond and Related Materials, 1999, 8(6): 1083-1090. [47] WANG C Y, ZHANG F L, KUANG T C, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3[J]. Thin Solid Films, 2006, 496(2): 698-702. [48] REN J, ZHANG K L, WANG F, et al. Investigation of diamond films polished by thermal chemical mechanical polishing[J]. ECS Transactions, 2013, 52(1): 517. [49] YUAN Z W, ZHENG P, WEN Q, et al. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 1715-1727. [50] YUAN Z W, JIN Z J, ZHANG Y J, et al. Chemical mechanical polishing slurries for chemically vapor-deposited diamond films[J]. Journal of Manufacturing Science and Engineering, 2013, 135(4): 041006. [51] TOKUDA N, TAKEUCHI D, RI S G, et al. Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions[J]. Diamond and Related Materials, 2009, 18: 213-215. [52] KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique[J]. Diamond and Related Materials, 2012, 24: 59-62. [53] KUBOTA A, NAGAE S, MOTOYAMA S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate[J]. Diamond and Related Materials, 2015, 60: 75-80. [54] KUBOTA A, MOTOYAMA S, TOUGE M. Surface smoothing of a polycrystalline diamond using an iron plate-H2O2 chemical reaction[J]. Diamond and Related Materials, 2016, 69: 96-101. [55] YUAN S, GUO X G, LI M, et al. An insight into polishing slurry for high quality and efficiency polishing of diamond[J]. Tribology International, 2022, 174: 107789. [56] KUBOTA A, NAGAE S, TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution[J]. Diamond and Related Materials, 2016, 70: 39-45. [57] YUAN S, GUO X G, HUANG J X, et al. Sub-nanoscale polishing of single crystal diamond (100) and the chemical behavior of nanoparticles during the polishing process[J]. Diamond and Related Materials, 2019, 100: 107528. [58] GUO X G, YUAN S, WANG X L, et al. Atomistic mechanisms of chemical mechanical polishing of diamond (100) in aqueous H2O2/pure H2O: Molecular dynamics simulations using reactive force field (ReaxFF)[J]. Computational Materials Science, 2019, 157: 99-106. [59] LIAO L X, LUO S M, CHANG X F, et al. Study on the mechanism of chemical mechanical polishing on high-quality surface of single crystal diamond[J]. Journal of Manufacturing Processes, 2023, 105: 386-398. [60] ANAN S, TOUGE M, KUBOTA A, et al. Study on ultra precision polishing of single crystal diamond substrates under ultraviolet irradiation[J]. Key Engineering Materials, 2009, 407/408: 355-358. [61] WATANABE J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials[J]. Diamond and Related Materials, 2013, 39: 14-19. [62] KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54: 269-275. [63] YANG H P, JIN Z J, NIU L, et al. Visible-light catalyzed assisted chemical mechanical polishing of single crystal diamond[J]. Diamond and Related Materials, 2022, 125: 108982. [64] YANG H P, JIN Z J, NIU H, et al. A novel visible-light catalyzed assisted single crystal diamond chemical mechanical polishing slurry and polishing mechanism[J]. Materials Today Communications, 2022, 33: 104249. [65] 高 濂, 郑 珊, 张青红, 等. 纳米氧化钛光催化材料及应用[M]. 北京: 化学工业出版社, 2002. GAO L, ZHENG S, ZHANG Q H, et al. Nanometer titanium oxide photocatalytic materials and their applications[M]. Beijing: Chemical Industry Press, 2002 (in Chinese). [66] LIU W T, XIONG Q, LU J B, et al. Tribological behavior of single crystal diamond based on UV photocatalytic reaction[J]. Tribology International, 2022, 175: 107806. [67] 苑泽伟, 杜海洋, 何 艳, 等. 光催化辅助化学机械抛光CVD金刚石抛光液的研制[J]. 金刚石与磨料磨具工程, 2016, 36(5): 15-20. YUAN Z W, DU H Y, HE Y, et al. Preparation of slurry for photocatalytic assisted chemical mechanical polishing CVD diamond[J]. Diamond & Abrasives Engineering, 2016, 36(5): 15-20 (in Chinese). [68] SHAO J Y, ZHAO Y J, ZHU J H, et al. A new slurry for photocatalysis-assisted chemical mechanical polishing of monocrystal diamond[J]. Machines, 2023, 11(6): 664. [69] HAN X S, HU Y Z, YU S Y. Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method[J]. Applied Physics A, 2009, 95(3): 899-905. [70] HARRISON J A, WHITE C T, COLTON R J, et al. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces[J]. Physical Review B, 1992, 46(15): 9700-9708. [71] HARRISON J A, WHITE C T, COLTON R J, et al. Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces[J]. The Journal of Physical Chemistry, 1993, 97(25): 6573-6576. [72] HARRISON J A, BRENNER D W. Simulated tribochemistry: an atomic-scale view of the wear of diamond[J]. Journal of the American Chemical Society, 1994, 116(23): 10399-10402. [73] GAO G T, CANNARA R J, CARPICK R W, et al. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM[J]. Langmuir, 2007, 23(10): 5394-5405. [74] YANG N, HUANG W, LEI D J. Control of nanoscale material removal in diamond polishing by using iron at low temperature[J]. Journal of Materials Processing Technology, 2020, 278: 116521. [75] LIN Q, CHEN S L, JI Z, et al. High-temperature wear mechanism of diamond at the nanoscale: a reactive molecular dynamics study[J]. Applied Surface Science, 2022, 585: 152614. [76] LIN J F, FANG T H, WU C D, et al. Nanotribological behavior of diamond surfaces using molecular dynamics with fractal theory and experiments[J]. Current Applied Physics, 2010, 10(1): 266-271. [77] YANG N, ZONG W J, LI Z Q, et al. Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction[J]. Computational Materials Science, 2014, 95: 551-556. [78] LIU H Z, ZONG W J, CHENG X. Behaviors of carbon atoms induced by friction in mechanical polishing of diamond[J]. Computational Materials Science, 2021, 186: 110069. [79] SHI Z Y, JIN Z J, GUO X G, et al. Interfacial friction properties in diamond polishing process and its molecular dynamic analysis[J]. Diamond and Related Materials, 2019, 100: 107546. [80] SHI Z Y, JIN Z J, GUO X G, et al. Insights into the atomistic behavior in diamond chemical mechanical polishing with OH environment using ReaxFF molecular dynamics simulation[J]. Computational Materials Science, 2019, 166: 136-142. [81] 袁 菘, 郭晓光, 金洙吉, 等. 金刚石化学机械抛光研究现状[J]. 表面技术, 2020, 49(4): 11-22. YUAN S, GUO X G, JIN Z J, et al. Research status on chemical mechanical polishing of diamond[J]. Surface Technology, 2020, 49(4): 11-22 (in Chinese). [82] YUAN S, GUO X G, LI P H, et al. Insights into the surface oxidation modification mechanism of nano-diamond: an atomistic understanding from ReaxFF simulations[J]. Applied Surface Science, 2021, 540: 148321. [83] YUAN S, GUO X G, HUANG J X, et al. Insight into the mechanism of low friction and wear during the chemical mechanical polishing process of diamond: a reactive molecular dynamics simulation[J]. Tribology International, 2020, 148: 106308. [84] YUAN S, GUO X G, MAO Q, et al. Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations[J]. International Journal of Mechanical Sciences, 2021, 191: 106096. |
[1] | LAN Feifei, LIU Shasha, FANG Shishu, WANG Yingmin, CHENG Hongjuan. Research Progress on Controlling the Thermal Boundary Resistance of GaN on Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 913-921. |
[2] | XIAO Hongyu, LI Yong, TIAN Changhai, ZHANG Weixi, WANG Qiang, XIAO Zhengguo, WANG Ying, JIN Hui, BAO Zhigang, ZHOU Zhenxiang. Study on the Growth of Type-Ib Diamond Single Crystal and the Temperature Field Distribution in the Synthesis Cavities [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 959-966. |
[3] | SUN Xinghan, LI Jihu, ZHANG Wei, ZENG Qunfeng, ZHANG Junfeng. Research Progress on Material Removal Non-Uniformity in Silicon Carbide Chemical Mechanical Polishing [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 585-599. |
[4] | ZHANG Yalin, AN Xiaoming, GE Xingang, JIANG Long, LI Yifeng. Thermal Conductivity Test of Large-Size Diamond by Laser Flash Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 503-510. |
[5] | LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 181-193. |
[6] | HAO Jinglin, DENG Lifen, WANG Kaiyue, SONG Hui, JIANG Nan, KAZUHITO Nishimura. Synthesis of Doped Diamond by High-Pressure and High-Temperature: a Review [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 194-209. |
[7] | LI Xinru, HOU Tong, MA Xu, WANG Pei, LI Yang, MU Wenxiang, JIA Zhitai, TAO Xutang. Study on the Influence of Miscut-Angle on the Processing of β-Ga2O3 (100) Plane Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1570-1575. |
[8] | LI Zongping, CHENG Dameng. Stress Field Analysis of Diamond Wire Sawing β-Ga2O3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1378-1385. |
[9] | CHEN Genqiang, ZHAO Xixiang, YU Zhongcheng, LI Zheng, WEI Qiang, LIN Fang, WANG Hongxing. Research Progress of Heteroepitaxial Single-Crystal Diamond and Related Electronic Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 931-944. |
[10] | QIAO Pengfei, LIU Kang, DAI Bing, LIU Benjian, ZHANG Sen, ZHANG Xiaohui, ZHU Jiaqi. Research Progress on Energy Band Structure and Physical Properties of Terminated Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 945-959. |
[11] | JIAN Xiaogang, ZHANG Yi, LIANG Xiaowei, YAO Wenshan. Growth Sites of Sulfur and Selenium Doped Diamond Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1120-1127. |
[12] | PENG Bo, LI Qi, ZHANG Shumiao, FAN Shuwei, WANG Ruozheng, WANG Hongxing. Research Progress of Diamond Schottky Barrier Diodes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 732-745. |
[13] | WU Ruiwen, SONG Huaping, YANG Junwei, QU Hongxia, LAI Xiaofang. Grinding Properties of 4H-SiC Single Crystal Substrate Using Polyurethane Pad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 759-765. |
[14] | QU Pengfei, JIN Peng, ZHOU Guangdi, WANG Zhen, XU Dunzhou, WU Ju, ZHENG Hongjun, WANG Zhanguo. Research Status of Iridium-Based Composite Substrates for Heteroepitaxy of Single Crystal Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 857-877. |
[15] | XU Jianxi, WANG Yuning, XU Yu, WANG Jianfeng, XU Ke. Mechanism of Remote Heteroepitaxial GaN Growth on Graphene [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 894-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||